Appendix B: Reservoir information This Page Intentionally Left Blank. | Table B-1. | BOR sa | ampling of | American | Falls Res | ervoir, A | ugust 1 | 995 to J | uly 2003 |------------------------|----------|----------------|----------------------------------|------------|------------|-----------------|-----------|-----------------|------------------|-----------------|------------|----------|--------|------|---------|-----|-------|------------------|--------------|---------------|--------------|------------|----------|--|------------------|---------|-----------| | | | | | | | | | | | | | | | | | TDS | | | | | | | | | | | | | Date | Repli- | Time | NO ₃ +NO ₂ | Ortho D | Total D | NH ₃ | TKN | CO ₃ | HCO ₃ | SO ₄ | l a | Ca | Mg | Na | K | SUM | | SiO ₂ | Fecal | Strep | E. coli | Chla | COD | TOC | SS | l ah nH | Turbidity | | sampled | | sampled | (mg/L) | (mg/L) | | | | (mg/L) | | | | | | | | | SAD | | | | (ct/100mL) | (mg/L) | | (mg/L) | | | (NTU) | | Sumpled | cuto | Jumpica | (IIIg/L) | [(III9/L) | [(1119/12) | [(1119/12) | T(IIIg/L) | T(mg/L) | (mg/L) | [(IIIg/L) | [(1119/12) | | | | eservoi | | 0/110 | [(mg/L) | T(CB TOOTHE) | T(CD TOOTTIE) | T(CB TOOTTL) | [(IIIg/L) | [(119/2) | T(IIIg/L) | T(IIIg/L) | (00) | (1410) | | 8/14/1995 | | 15:40 | 0.02 | 0.061 | 0.082 | 0.12 | 0.41 | 3.91 | 173 | 28 | 15.2 | 43.7 | 13.5 | 16.1 | | 229 | 0.5 | 16.8 | < 1 | < 1 | 1 | 0.0072 | 13 | 3.3 | 2 | | 1 | | 8/14/1995 | | 15:42 | 0.02 | 0.001 | 0.002 | 0.12 | 0.41 | 3.91 | 173 | 20 | 13.2 | 45.7 | 13.3 | 10.1 | 2.1 | 229 | 0.0 | 10.0 | ~ 1 | | | 0.0072 | 10 | 3.3 | - | | | | 8/14/1995 | | 15:44 | 8/14/1995 | | 15:44 | _ | | | | 8/14/1995 | | 15:48 | 8/14/1995 | 8/14/1995 | | 15:50
15:53 | 8/14/1995
8/14/1995 | | 15:55
15:57 | _ | | | | 8/14/1995 | | 16:00 | 0.02 | 0.063 | 0.074 | 0.12 | 0.25 | 0 | 180 | 28.6 | 15.2 | 43.7 | 13.4 | 16 | 2.7 | 229 | 0.5 | 17 | 5 | 1 | | | 10 | 3.1 | 2 | | 1 | | 8/4/1997 | - V | 13:55 | 0.02 | 0.003 | 0.074 | 0.12 | 0.23 | 6.16 | 148 | 19.2 | 9.7 | 39.7 | 10.5 | 10.7 | 2.3 | 183 | 0.3 | 9 | 16 | 2k | | 0.0521 | 14 | 4.5 | 5 | 8.7 | 4 | | 8/4/1997 | T | 13:55 | 0.01 | 0.004 | 0.034 | | 0.76 | 7.11 | 145 | 22.1 | 9.4 | 39.5 | 10.3 | 10.7 | 2.3 | 184 | 0.4 | 8.6 | 18 | 2k | | 0.0521 | 11 | 4.6 | 4 | 8.7 | 5 | | | | 13:57 | 0.02 | 0.004 | 0.034 | 0.07 | 0.00 | 7.11 | 140 | 22.1 | 9.4 | 39.3 | 10.5 | 10.0 | 2.3 | 104 | 0.4 | 0.0 | 10 | ZK. | | 0.0322 | | 4.0 | 4 | 0.1 | 3 | | 8/4/1997
8/4/1997 | + + | 13:59 | | | | _ | 1 | | | _ | _ | 1 | _ | _ | - | _ | | | | | | | | + | _ | | | | 8/4/1997 | 1 | 14:01 | | - | - | - | 1 | | | - | | 1 | - | | | - | | | | - | | | | 1 | - | | | | 8/4/1997 | + + | 14:01 | | | | | 1 | | | _ | | 1 | _ | | - | _ | | | | | | | | 1 | _ | | | | 8/4/1997 | 1 | 14:03 | | 1 | | - | 1 | | | - | | 1 | - | - | | - | | | | - | | - | | 1 | - | | | | 8/4/1997 | | 14:05 | _ | | | | 8/4/1997 | | 14:07 | | | | | - | | | _ | | - | _ | | - | _ | - | | | | | | | + | _ | | | | 8/4/1997 | | 14:10 | 8/4/1997 | | 14:10 | 8/4/1997 | | 14:11 | 0.27 | 0.129 | 0.156 | 0.09 | 0.18 | 0 | 160 | 20.4 | 9.6 | 40.3 | 10.1 | 10 | 2.2 | 186 | 0.4 | 11.3 | 14 | 2k | | | 5 | 3.2 | 2 | 8.3 | 3 | | 7/13/1998 | | 15:30 | 0.27 | 0.129 | 0.130 | 0.09 | 0.10 | 3.31 | 160 | 30.2 | 10.8 | 40.5 | 11.8 | 12.5 | 2.2 | 205 | 0.4 | 11.8 | 2K | 2K | | 0.0032 | 9 | 3.2 | 1 | 8.5 | 1 | | 7/13/1998 | | 15:33 | 0.04 | 0.003 | 0.003 | 0.04 | 0.29 | 3.31 | 100 | 30.2 | 10.0 | 40.5 | 11.0 | 12.3 | 2.2 | 203 | 0.4 | 11.0 | 2N | 2r\ | | 0.0032 | 9 | 3.2 | ' - | 0.5 | | | 7/13/1998 | | 15:35 | 7/13/1998 | | 15:37 | 7/13/1998 | | 15:38 | | | | | | | | | | | | | | | | | | - | | | | | _ | | | | 7/13/1998 | | 15:41 | 7/13/1998 | | 15:43 | 7/13/1998 | | 15:45 | 7/13/1998 | | 15:47 | 7/13/1998 | | 15:49 | 7/13/1998 | | 15:50 | 0.15 | 0.07 | 0.088 | 0.12 | 0.25 | 0 | 170 | 26.4 | 10.4 | 41.5 | 12.3 | 12.5 | 2.3 | 208 | 0.4 | 16.1 | 2K | 2K | | | 8 | 2.9 | 4 | 8.1 | 2 | | 6/26/2000 | | 14:50 | 0.09 | 0.051 | 0.065 | 0.12 | 0.23 | 5.19 | 173 | 33.1 | 16.8 | 45.7 | 14.8 | 17.2 | 2.9 | 239 | 0.4 | 14.5 | 2K | 2r\ | 2K | 0.0058 | 16 | 2.3 | 2 | 8.5 | 2 | | 6/26/2000 | | 14:52 | 0.09 | 0.031 | 0.003 | 0.00 | 0.20 | J.19 | 173 | 33.1 | 10.0 | 43.7 | 14.0 | 17.2 | 2.9 | 239 | 0.0 | 14.5 | ZN | | Zr. | 0.0036 | 10 | 2.0 | | 0.0 | | | 6/26/2000 | | 14:54 | 6/26/2000 | | 14:56 | 6/26/2000 | | 14:59 | 1 | | | | | 6/26/2000 | \vdash | 15:02 | | <u> </u> | | | † | | | | | † | | | | | | | | | <u> </u> | | | 1 | | | | | 6/26/2000 | 1 | 15:05 | | 1 | | | 1 | | | | | 1 | | | | | | | | | | | | 1 | | | | | 6/26/2000 | | 15:07 | | | | | | 6/26/2000 | | 15:09 | 1 | | | | | 6/26/2000 | | 15:12 | 0.1 | 0.057 | 0.064 | 0.08 | 0.3 | 2.36 | 177 | 35.5 | 16.8 | 45.3 | 14.7 | 17.4 | 2.9 | 240 | 0.6 | 14.5 | 2K | | 2K | | 16 | 2.2 | 2 | 8.4 | 2 | | 7/15/2003 | | | | | | 0.05 | | | 198 | | | 47.3 | | | | | 0.7 | | | | < 2 | 0.0064 | | 3.2 | 5 | 8.5 | 4 | | 7/15/2003 | \vdash | 14:00
14:04 | 0.07 | 0.052 | 0.082 | 0.05 | 0.43 | 2.95 | 190 | 43.7 | 21.1 | 41.3 | 16.5 | 21.4 | 3.6 | 278 | U./ | 20 | < 2 | - | <u> </u> | 0.0061 | 12 | 3.2 | 1 2 | 0.0 | 4 | | 7/15/2003 | | 14:04 | | | | | | | + | | | | | | 1 | | | - | | 1 | | - | | - | | | | | | - | | + | _ | | | | 7/15/2003 | | 14:09 | | | | | 1 | | | | | 1 | | | | | | | | | | | | 1 | - | | | | 7/15/2003 | +-+ | 14:12 | | | | | H | - | | | | H | | | | | | | <u> </u> | - | | - | H | - | . | | | | 7/15/2003 | | 14:14 | 0.1 | 0.089 | 0.113 | 0.19 | 0.51 | 0 | 205 | 43.3 | 20.9 | | 16.3 | 21.6 | 3.6 | 281 | 0.7 | 23 | < 2 | | < 2 | | 13 | 2.9 | 4 | 8.3 | 3 | | | | | | | | | | | | | | | nake F | | | | | | | | | | | | | | | | 8/14/1995 | \vdash | 16:35 | 0.02 | 0.067 | 0.079 | | 0.32 | 3.91 | 172 | 28 | 14.9 | | 13.4 | 16.1 | 2.7 | 228 | 0.5 | 16.9 | 3 | 2 | | | 10 | 3.2 | 2 | | 1 | | 8/4/1997 | \sqcup | 15:15 | 0.06 | 0.009 | 0.051 | 0.08 | 0.55 | 1.9 | 157 | 21.6 | 9.7 | 39.3 | 10.1 | 10.6 | 2.3 | 185 | 0.4 | 9.1 | 10 | 12 | | | 7 | 3.7 | 3 | 8.5 | 2 | | 7/13/1998 | \sqcup | 16:33 | 0.09 | 0.022 | 0.053 | 0.08 | 0.22 | 1.42 | 164 | 28.8 | 10.5 | 40.9 | 11.9 | 12.4 | 2.2 | 205 | 0.4 | 12.9 | 2K | 12 | | | 8 | 3 | 2 | 8.4 | 1 | | 6/26/2000 | | 15:50 | 0.1 | 0.056 | 0.069 | 0.09 | 0.41 | 4.24 | 175 | 33.1 | 17 | 45.1 | 14.7 | 17.5 | 2.9 | 239 | 0.6 | 14.6 | 16 | | 2 | | 15 | 2.3 | 2 | 8.5 | 2 | | 7/15/2003 | | 14:45 | 0.1 | 0.068 | 0.102 | 0.11 | 0.42 | 1.97 | 200 | 43.7 | 21.2 | 46.9 | 16.6 | 24.5 | 3.6 | 283 | 8.0 | 22.2 | 40 | | 4 | | | 3.1 | 4 | 8.4 | 3 | Table B-1. Continued. | Table B-1. | Contin | ued. |-------------|----------|-----------------|------------------|------------|-----------------|-----------------|---------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|--------------------|-----------------|--------------|------------|--------------|-------------|------------|-------|------------|-------------------|--------------------| | | | | | | | | | | | | | | | | | Com | Field | | | Field | | | BP | Diag | N ₂ -Ar | | Doto | Donli | Time | Doron | FI | As | Se | Lla | Cd | Cr | Cu | Pb | Fe | Mn | Zn | Casabi | Sam. | Temp | DO | Field | Field
EC | ORP | Flow | | Diss. | _ | | Date | Repli- | Time
sampled | Boron
(u g/L) | (mg/L) | (u g/L) | (u g/L) | Hg
(u g/L) | (u g/L) | (u g/L) | | (u g/L) | | (u g/L) | (u a/L) | Secchi
(meters) | Depth
(feet) | (°C) | (mg/L) | pH (SU) | (u S/cm) | (mv) | (cfs) | (mm
Hg) | gas
(%) | gas | | sampled | cate | Sampleu | (a grL) | [(ITIG/L) | [(a gru) | (agre) | (a gil) | (a gil) | [(a gru) | (u g/L) | | (u g/L) | | | (Illeters) | (leet) | () | [(IIIg/L) | pn (30) | [(a Sicili) | (HIIV) | (015) | ny) | (70) | (%) | | 0/4 4/4 005 | | 45.40 | _ | 0.50 | 1 0 | | .00 | . 4 | I . a | 1 | | erican Fa | | | 0.4 | 2.2 | 20.0 | 1 00 | 0.50 | 204 | 00 | | 05.74 | | | | 8/14/1995 | | 15:40
15:42 | 0 | 0.58 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | < 20 | 30 | < 5 | 3.1 | 3.3
9.8 | 20.3 | 8.6
7.3 | 8.53 | 364 | 82
84 | | 25.71 | | | | 8/14/1995 | | | | | | | | | | | | | | | | | 19.9 | | 8.38
8.32 | 366 | | | | \longrightarrow | | | 8/14/1995 | | 15:44
15:46 | | | | | | | | | | | | | | 16.4
23 | 19.8
19.7 | 6.8
6.6 | 8.31 | 366
366 | 86
86 | | | \longrightarrow | | | 8/14/1995 | | 15:48 | | | | | | | | | | | | | | 29.5 | 19.7 | 6.5 | 8.3 | 368 | 86 | | | \rightarrow | | | 8/14/1995 | | 15:50 | | | | | | | | | | | | | | 36.1 | 19.6 | 6.4 | 8.29 | 370 | 85 | | | | | | 8/14/1995 | | 15:53 | | | | | | | | | | | | | | 42.6 | 19.6 |
6.4 | 8.29 | 368 | 85 | | | | | | 8/14/1995 | | 15:55 | | | | | | | | | | | | | | 49.2 | 19.6 | 6.4 | 8.29 | 370 | 85 | | | $\overline{}$ | | | 8/14/1995 | | 15:57 | | | | | | | | | | | | | | 55.8 | 19.2 | 2.7 | 7.8 | 374 | 99 | | | $\overline{}$ | | | 8/14/1995 | | 16:00 | 0 | 0.58 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 50 | 50 | < 5 | | 59.4 | 18.8 | 2.3 | 7.73 | 376 | 98 | | | $\overline{}$ | | | 8/4/1997 | Y | 13:55 | 60 | 0.46 | 4 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 20 | < 10 | < 5 | | 3.3 | 10.0 | 2.0 | 7.75 | 370 | - 30 | | | | | | 8/4/1997 | <u> </u> | 13:55 | 50 | 0.46 | 4 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 20 | < 10 | < 5 | 1.6 | 3.3 | 21.9 | 9.4 | | 321 | 126 | | 663 | | | | 8/4/1997 | 1 | 13:57 | | 5.10 | <u> </u> | _ - | J.2 | <u> </u> | T | T | T - | | 10 | | | 9.6 | 21.8 | 9.1 | | 322 | 126 | | 662 | $\overline{}$ | | | 8/4/1997 | | 13:59 | | | | | | | | | | | | | | 16 | 21.6 | 8.5 | | 324 | 126 | | 665 | | | | 8/4/1997 | | 14:01 | | | | | | | | | | | | | | 22.4 | 21.4 | 8.4 | | 324 | 126 | | 662 | | | | 8/4/1997 | | 14:03 | | | | | | | | | | | | | | 28.8 | 21.2 | 8.1 | | 325 | 126 | | 662 | | | | 8/4/1997 | | 14:05 | | | | | | | | | | | | | | 35.2 | 20.5 | 6.7 | | 326 | 131 | | 662 | | | | 8/4/1997 | | 14:07 | | | | | | | | | | | | | | 41.6 | 18.2 | 3.6 | | 332 | 139 | | 662 | | | | 8/4/1997 | | 14:09 | | | | | | | | | | | | | | 48 | 17.7 | 2.1 | | 332 | 113 | | 662 | | | | 8/4/1997 | | 14:10 | | | | | | | | | | | | | | 54.4 | 17.6 | 1.4 | | 334 | 114 | | 662 | | | | 8/4/1997 | | 14:11 | | | | | | | | | | | | | | 60.8 | 17.4 | 1.2 | | 333 | 145 | | 662 | | | | 8/4/1997 | | 14:13 | 50 | 0.48 | 4 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 80 | 160 | < 5 | | 65.3 | 17.4 | 1.1 | | 334 | 145 | | 662 | | | | 7/13/1998 | | 15:30 | 50U | 0.52 | 2 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 60 | 10.0U | < 5 | 4.5 | 3.3 | 22.6 | 8.2 | | 350 | 175 | | 654 | | | | 7/13/1998 | | 15:33 | | | | | | | | | | | | | | 9.8 | 21.8 | 8.3 | 8.15 | 350 | 161 | | | | | | 7/13/1998 | | 15:35 | | | | | | | | | | | | | | 16.4 | 20.4 | 8 | 8.32 | 353 | 162 | | | | | | 7/13/1998 | | 15:37 | | | | | | | | | | | | | | 23 | 19.2 | 7.5 | 8.35 | 355 | 162 | | | | | | 7/13/1998 | | 15:38 | | | | | | | | | | | | | | 29.5 | 18.4 | 6.8 | 8.3 | 357 | 164 | | | | | | 7/13/1998 | | 15:41 | | | | | | | | | | | | | | 36.1 | 17.6 | 5.9 | 8.45 | 359 | 155 | | | \longrightarrow | | | 7/13/1998 | | 15:43
15:45 | | | | | | | | | | | | | | 42.6
49.2 | 17.5 | 5.7 | 8.43 | 360 | 155 | | | | | | 7/13/1998 | | 15:45 | | | | | | | | | | | | | | 49.2
55.8 | 16.8
15.9 | 5.2
3.8 | 8.4
8.3 | 364
366 | 157
162 | | | | | | 7/13/1998 | | 15:49 | | | | | | | | | | | | | | 62.3 | 15.9 | 3.2 | 8.23 | 369 | 164 | | | \rightarrow | | | 7/13/1998 | | 15:50 | 50U | 0.51 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 100 | 40 | < 5 | | 67.6 | 15.7 | 3.2 | 0.23 | 370 | 168 | | | \longrightarrow | | | 6/26/2000 | | 14:50 | 69 | 0.72 | 4 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 60 | 30 | < 5 | 3.7 | 3.3 | 19.6 | 8.3 | 8.49 | 395 | 149 | | 658 | | | | 6/26/2000 | i l | 14:52 | | 0.12 | | 2 | - 0.2 | | 1 72 | | 2 | | - 50 | 0 | 0.7 | 9.8 | 18.9 | 8.4 | 8.49 | 393 | 147 | | 000 | | | | 6/26/2000 | 1 | 14:54 | | | | | | | | | | | | | | 16.4 | 18.2 | 8 | 8.47 | 393 | 148 | | | | | | 6/26/2000 | | 14:56 | | | | | | | | | | | | | | 23 | 17.5 | 7.6 | 8.45 | 393 | 148 | | | | | | 6/26/2000 | | 14:59 | | | | | | | | | | | | | | 29.5 | 17.2 | 7 | 8.41 | 399 | 149 | | | | | | 6/26/2000 | | 15:02 | | | | | | | | | | | | | | 36.1 | 17.1 | 7 | 8.4 | 395 | 149 | | | $\overline{}$ | | | 6/26/2000 |) | 15:05 | | | | | | | | | | | | | | 42.7 | 16.9 | 6.7 | 8.37 | 394 | 150 | | | \neg | | | 6/26/2000 |) | 15:07 | | | | | | | | | | | | | | 49.2 | 16.8 | 6.6 | 8.35 | 395 | 150 | | | | | | 6/26/2000 |) | 15:09 | | | | | | | | | | | | | | 55.8 | 16.7 | 6.4 | 8.31 | 395 | 142 | | | | | | 6/26/2000 |) | 15:12 | < 50 | 0.72 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 60 | 40 | 20 | | 57.7 | 16.7 | 6.3 | 8.31 | 395 | 143 | | | | | | 7/15/2003 | 3 | 14:00 | 100 | 0.84 | NE ¹ | NE ¹ | < 0.2 | NE ¹ 2.1 | 3.3 | 23.2 | 7.7 | 8.61 | 454 | 89 | | 655 | 7 | | | 7/15/2003 | | 14:04 | | | | | | | | | | | | | | 9.8 | 22.2 | 7.8 | 8.67 | 454 | 78 | | | | | | 7/15/2003 | | 14:07 | | | | | | | | | | | | | | 16.4 | 21.8 | 6.8 | 8.59 | 454 | 79 | | | | | | 7/15/2003 | 3 | 14:09 | | | | | | | | | | | | | | 23 | 21.6 | 6.4 | 8.51 | 455 | 80 | | | | | | 7/15/2003 | 3 | 14:12 | | | | | | | | | | | | | | 29.5 | 21.1 | 4.9 | 8.31 | 458 | 82 | | | | | | 7/15/2003 | 3 | 14:14 | 130 | 0.85 | NE ¹ | NE ¹ | < 0.2 | NE ¹ | 35.8 | 20.4 | 1.3 | 7.94 | 461 | -35 | | | | | | | • | | | | | | | | • | | • | Snake | | | | | | • | • | | | | | | | | 8/14/1995 | 5 | 16:35 | 0 | 0.58 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 30 | 60 | < 5 | | | 20.1 | 6.4 | 8.37 | 366 | 72 | 12690 | | 96.9 | 101.6 | | 8/4/1997 | | 15:15 | 60 | 0.47 | 3 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 30 | 20 | < 5 | | | 21 | 8.2 | | 124 | 132 | | 662 | 180 | 103.5 | | 7/13/1998 | 3 | 16:33 | 50U | 0.51 | 2 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 60 | 20 | 5 | | | 19.7 | 6.8 | | 358 | 173 | 12510 | 654 | 101.6 | 102.4 | | 6/26/2000 |) | 15:50 | 53 | 0.73 | 4 | < 2 | < 0.2 | < 1 | < 2 | < 2 | < 2 | 70 | 40 | < 5 | | | 17.9 | 7.5 | 8.46 | 393 | 175 | 13420 | 658 | 100.6 | | | 7/15/2003 | 3 | 14:45 | 110 | 0.85 | NE ¹ | NE ¹ | < 0.2 | NE ¹ | | 22.3 | 6.7 | 8.57 | 453 | 86 | | 657 | 99.5 | | ¹NE=not entered | Table B-2. DI | EQ samplin | g of Amer | ican Falls F | Reservoir, | May 200 | 01 to Au | gust 20 | 03. | | | | | | | | | |------------------|------------------------|-----------------|------------------------|-------------------|---------------|---------------|---------------------|------------------|------------------------|----------------------|-----------------|--------------|------------|--------------------|--------------------|--| | | | | | | | | | | TDS- | | | | Lab | | | | | Sito camplo | Date
sampled | Time
sampled | $ NO_3+NO_2 $
 mg/L | Ortho P
(mg/L) | Total P | NH₃
(mg/L) | TKN
(mg/L) | HCO ₃ | 180
(mg/L) | Alkalinity
(mg/L) | Chl a
(mg/L) | SS
(mg/L) | pH
(SU) | Lab EC
(u S/cm) | Turbidity
(NTU) | Comments | | Site sample | sampleu | Sampled | (IIIg/L) | (IIIg/L) | (IIIg/L) | (HIG/L) | (IIIg/L) | (mg/L) | | (HIG/L) | (IIIg/L) | (IIIg/L) | (30) | (a Sicili) | (1410) | Comments | | Column | 5/11/2001 | 9:30 | 0.14 | 0.006 | 0.03 | 0.02 | 0.32 | near
189 | 274 | 161 | | 9 | 8.5 | 449 | 3 | | | Bottom | 5/11/01 | 9:40 | 0.16 | 0.007 | 0.044 | 0.03 | 0.4 | 190 | 275 | 161 | | 11 | 8.4 | 452 | 4 | | | Column | 5/23/2001
5/23/01 | 10:00 | 0.02 | < 0.003 | < 0.01 | 0.01 | 0.27 | 182 | 245
247 | 152
152 | | 2 | 8.4 | 433 | 2 | | | Bottom
Column | 6/6/2001 | 10:15
9:45 | 0.03 | 0.052 | 0.015 | 0.03 | 0.29 | 183
188 | 259 | 154 | 0.0036 | 3 | 8.4
8.2 | 436
446 | 3 | | | Bottom | 6/6/2001 | 9:45 | 0.06 | 0.055 | 0.073 | 0.17 | 0.44 | 189 | 252 | 155 | | 6 | 8.1 | 446 | 5 | | | Column
Bottom | 6/20/2001
6/20/2001 | 10:15
10:30 | 0.08 | 0.041 | 0.056 | 0.08 | 0.38 | 190
190 | 256
253 | 156
156 | 0.0034 | 3
7 | | 449
451 | 2
5 | | | Column | 7/3/2001 | 12:30 | 0.00 | 0.031 | 0.073 | 0.11 | 0.57 | 197 | 278 | 162 | 0.0035 | 4 | | 455 | 3 | | | Bottom | 7/3/2001 | 12:45 | 0.11 | 0.049 | 0.06 | 0.12 | 0.4 | 197 | 273 | 162 | | 2 | | 450 | 2 | | | Column
Bottom | 7/12/2001
7/12/2001 | 11:00
11:00 | 0.13 | 0.064
0.184 | 0.087
2.14 | 0.14 | 0.48 | 199
203 | 264
280 | 163
166 | 0.002 | 3
6 | 8.3
8.1 | 459
461 | 4
6 | | | Column | 7/19/2001 | 9:30 | 0.08 | 0.078 | 0.101 | 0.1 | 0.54 | 194 | 273 | 164 | 0.0006 | 2 | 8.4 | 460 | < 1 | | | Bottom | 7/19/2001 | 9:45 | 0.06 | 0.208 | 0.22 | 0.4 | 0.62 | 205 | 277 | 168 | | 3 | 7.9 | 467 | < 1 | | | Column
Bottom | 7/25/2001
7/25/2001 | 11:45
12:00 | 0.05 | 0.075 | 0.099 | 0.07 | 0.37 | 193
191 | 277
276 | 164
165 | 0.0117 | 6
8 | 8.6
8.6 | 460
460 | < 1 | | | Column | 8/2/2001 | 10:45 | 0.04 | 0.05 | 0.089 | 0.01 | 0.72 | 185 | 270 | 166 | 0.0406 | 7 | 8.6 | 459 | 4 | loose lids | | Bottom | 8/2/2001 | 10:50 | 0.05 | 0.058 | 0.088 | 0.03 | 0.44 | 187 | 272 | 166 | 0.0000 | 9 | 8.6 | 461 | 4 | loose lids | | Column
Bottom | 8/8/2001
8/8/2001 | 9:45
9:55 | 0.03 | 0.055
0.095 | 0.085 | 0.06 | 0.57 | 193
201 | 275
275 | 166
167 | 0.0022 | 2 | 8.5
8.4 | 464
467 | 2 | | | Column | 6/4/2002 | 14:45 | 0.01 | 0.007 | 0.031 | < 0.01 | 0.26 | 181 | 255 | 156 | 0.006 | 3 | 8.7 | 449 | 2 | | | Bottom | 6/4/2002 | 14:30 | 0.02 | 0.014 | 0.042 | < 0.01 | 0.34 | 180 | 252 | 155 | 0.0075 | 5 | 8.7 | 451 | 2 | | | Column
Bottom | 6/20/2002 | 10:45
10:30 | 0.04 | 0.032 | 0.054 | 0.05 | 0.54 | 179
185 | 255
259 | 154
155 | 0.0075 | 3 | 8.5
8.4 | 448
450 | 2 | | | Column | 7/2/2002 | 12:00 | 0.02 | 0.124 | 0.155 | 0.3 | 0.53 | 191 | 262 | 157 | 0.0063 | 3 | 8.3 | 453 | < 1 | | | Bottom | 7/2/2002 | 11:50 | 0.02 | 0.153 | 0.186 | 0.43 | 0.63 | 195 | 263 | 160 | 0.0097 | 2 | 8.2 | 455 | 1 | | | Column
Bottom | 7/15/2002
7/15/2002 | 11:05
10:55 | 0.06 | 0.045
0.107 | 0.149 | 0.39 | 0.66 | 190
197 | 256
258 | 160
162 | 0.0097 | 3 | 8.5
8.3 | 443
455 | 2 | | | Column | 7/31/2002 | 8:50 | 0.03 | 0.065 | 0.12 | 0.04 | 0.78 | 183 | 270 | 162 | 0.0269 | 6 | 8.7 | 440 | 5 | | | Bottom
Column | 7/31/2002
5/28/2003 | 8:00
11:00 | 0.05
< 0.01 | 0.076 | 0.104 | 0.08 | 0.43 | 189
188 | 270 | 163
160 | 0.0045 | 2 | 8.6
8.5 | 444
459 | 6
< 1 | | | Bottom | 5/28/2003 | 10:50 | 0.01 | 0.009 | 0.031 | 0.01 | 0.28 | 192 | | 160 | 0.0045 | 8 | 8.4 | 459 | 1 | | | Column | 6/9/2003 | 10:00 | 0.04 | 0.031 | 0.055 | 0.11 | 0.42 | 196 | | 161 | 0.0043 | 2 | 8.3 | 474 | 2 | | | Bottom
Column |
6/9/2003
6/26/2003 | 9:45
10:10 | 0.04 | 0.035 | 0.055 | 0.11 | 0.4 | 197
202 | | 162
166 | 0.0046 | 2 | 8.3
8.3 | 475
491 | 2 | | | Bottom | 6/26/2003 | 9:55 | 0.07 | 0.061 | 0.002 | 0.16 | 0.51 | 202 | | 166 | 0.0040 | 2 | 8.3 | 490 | 3 | | | Column | 7/11/2003 | 11:15 | 0.06 | 0.038 | 0.09 | 0.04 | 0.44 | 203 | | 166 | 0.0134 | 4 | 8.3 | 459 | 2 | received past holding times | | Bottom
Column | 7/11/2003
7/23/2003 | 11:00
10:15 | 0.06 | 0.043
0.058 | 0.079 | 0.08 | 0.4 | 203
191 | | 166
161 | 0.009 | 3 | 8.3
8.4 | 460
429 | 3 | received past holding times | | Bottom | 7/23/2003 | 10:00 | 0.07 | 0.129 | 0.161 | 0.21 | 0.54 | 197 | | 162 | 0.000 | 2 | 8.1 | 431 | 3 | | | Column | 8/5/2003 | 9:50 | 0.02 | 0.104 | 0.166 | 0.07 | 0.83 | 183 | | 152 | 0.0305 | 8 | 8.4 | 406 | 5 | | | Bottom | 8/5/2003 | 9:40 | 0.03 | 0.097 | 0.149 | 0.07 | 0.71
hours: | 182
ampline | Levent | 151
near dam | | 8 | 8.4 | 404 | 7 | | | | | | | | | | | 2111211112 | 1010110 | liour dum | | | | | | Fixed and Chl-a Sample | | | 7/18/2002 | 18:30 | | | 0.088 | 0.09 | 0.54 | | | - | 0.0115 | | | | - | Only, Received Late
Fixed and Chl-a Sample | | | 7/19/2002 | 6:30 | | | 0.082 | 0.08 | 0.6 | | | | 0.0202 | | | | | Only, Received Late | | | | | | | | | | | | | | | | | | Fixed Sample Only Rec'd
Late, Chlorophyll labeled | | | 7/19/2002 | 12:30 | | | 0.078 | 0.05 | 0.42 | | enker D |
 aint | 0.0092 | | | | | 7/15/02 | | Column | 8/8/2001 | 8:15 | 0.16 | 0.041 | 0.06 | 0.07 | οπ F
0.42 | enstern
200 | 1 aker P
276 | 164 | 0.014 | 5 | 8.3 | 463 | 2 | | | Bottom | 8/8/2001 | 8:35 | 0.14 | 0.046 | 0.063 | 0.08 | 0.35 | 201 | 285 | 165 | | 3 | 8.3 | 465 | 2 | | | Column | 6/4/2002
6/4/2002 | 13:55 | 0.01 | 0.003 | 0.034 | < 0.01 | 0.3 | 182 | 238
253 | 155 | 0.006 | 3 | 8.6 | 450 | 2 | | | Bottom
Column | 7/2/2002 | 13:45
13:25 | < 0.02 | 0.03 | 0.053 | < 0.01 | 0.27 | 190
183 | 253
254 | 157
158 | 0.0054 | 4 | 8.4
8.5 | 453
446 | 1 | | | Bottom | 7/2/2002 | 13:45 | 0.02 | 0.04 | 0.086 | 0.24 | 0.38 | 178 | 255 | 157 | | 5 | 8.5 | 447 | 1 | | | Column
Bottom | 7/15/2002
7/15/2002 | 10:00
9:50 | 0.06 | 0.03 | 0.079 | 0.07 | 0.48 | 182
194 | 256
257 | 161
163 | 0.0176 | 3 | 8.7
8.5 | 447
453 | 2 | | | Column | 6/26/2003 | 9:30 | 0.2 | 0.05 | 0.136 | 0.37 | 0.72 | 201 | 201 | 165 | 0.0041 | 2 | 8.3 | 453 | 2 | | | Bottom | 6/26/2003 | 9:10 | 0.07 | 0.061 | 0.097 | 0.18 | 0.61 | 202 | | 166 | | 3 | 8.2 | 491 | 3 | | | Column
Bottom | 7/23/2003
7/23/2003 | 9:15
9:00 | 0.01 | 0.051
0.082 | 0.103 | 0.02 | 0.7 | 178
191 | | 162
160 | 0.0242 | 6
11 | 8.6
8.4 | 432
425 | 8 | | | Column | 8/5/2003 | 7:50 | 0.04 | 0.062 | 0.144 | 0.07 | 1.27 | 173 | | 144 | 0.0686 | 15 | 8.4 | 388 | 12 | | | Bottom | 8/5/2003 | 7:35 | 0.03 | 0.049 | 0.157 | 0.03 | 1.04 | 173 | | 145 | | 14 | 8.4 | 388 | 12 | | | | | | | | | | | | TDS- | | | | Lab | | | | |------------------|------------------------|----------------|----------------------------------|---------|--------|--------------|--------------|------------------|------------|----------------|-----------|-----------|------------|------------|-----------|--------------------------------| | | Date | Time | NO ₃ +NO ₂ | Ortho-P | T-Phos | NH3 | TKN | HCO ₃ | 180 | Alkalinity | Chl a | SS | рН | Lab EC | Turbidity | | | Site sample | sampled | sampled | (mg/L) | (mg/L) | (mg/L) | (mg/L) | | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (mg/L) | (SU) | (u S/cm) | (NTU) | Comments | | Column | 5/11/2001 | 8:10 | < 0.01 | 0.004 | 0.026 | < 0.01 | 0ff Lit | 178 | 258 | point
148 | | 10 | 8.4 | 430 | 4 | | | Bottom | 5/11/01 | 8:20 | < 0.01 | < 0.003 | 0.025 | < 0.01 | 0.32 | 177 | 256 | 148 | | 10 | 8.4 | 430 | 4 | | | Column | 5/23/2001 | 8:25 | 0.05 | 0.032 | 0.054 | 0.19 | 0.52 | 188 | 261 | 157 | | 2 | 8.4 | 448 | 1 | | | Bottom
Column | 5/23/01
6/20/2001 | 8:45
9:15 | 0.02 | 0.036 | 0.054 | 0.19 | 0.5 | 186
196 | 255
260 | 154 | 0.0078 | 3 | 8.4 | 441
448 | 2 | | | Bottom | 6/20/2001 | 9:15 | 0.15 | 0.025 | 0.044 | 0.07 | 0.43 | 197 | 265 | 162 | 0.0078 | 2 | | 455 | 2 | | | Column | 7/3/2001 | 9:30 | 0.14 | 0.048 | 0.088 | 0.12 | 0.58 | 199 | 272 | 163 | 0.0112 | 6 | | 459 | 5 | | | Bottom | 7/3/2001 | 10:00 | 0.14 | 0.058 | 0.094 | 0.16 | 0.53 | 200 | 275 | 164 | | 8 | | 449 | 7 | | | Column
Bottom | 7/12/2001 | 9:00 | 0.12
0.12 | 0.051 | 0.091 | 0.13 | 0.52 | 193
197 | 270
276 | 162
162 | 0.0132 | 10
15 | 8.4 | 446
444 | 9 | | | Column | 7/25/2001 | 9:30 | 0.12 | 0.049 | 0.030 | 0.09 | 0.43 | 200 | 281 | 168 | 0.0064 | 38 | 8.5 | 465 | 12 | | | Bottom | 7/25/2001 | 9:45 | 0.28 | 0.048 | 0.105 | 0.08 | 0.47 | 198 | 281 | 168 | | 34 | 8.5 | 464 | 10 | | | Column | 8/2/2001 | 8:30 | 0.15 | 0.04 | 0.105 | 0.05 | 0.72 | 199 | 274 | 165 | 0.0572 | 15 | 8.4 | 458 | 13 | loose lids | | Bottom
Column | 8/2/2001 | 8:50
7:30 | 0.18
0.35 | 0.042 | 0.136 | 0.08 | 0.75 | 199
206 | 272
283 | 165
169 | 0.0156 | 22
12 | 8.4 | 458
471 | 13 | loose lids | | Bottom | 8/8/2001 | 7:45 | 0.32 | 0.06 | 0.119 | 0.16 | 0.93 | 210 | 287 | 172 | 0.0130 | 17 | 8.1 | 476 | 10 | | | Column | 6/4/2002 | 12:15 | 0.03 | 0.031 | 0.044 | 0.13 | 0.4 | 186 | 250 | 155 | 0.0027 | < 1 | 8.5 | 448 | 1 | | | Bottom | 6/4/2002 | 12:00 | 0.04 | 0.038 | 0.049 | 0.15 | 0.47 | 187 | 254 | 155 | 0.0477 | < 1 | 8.4 | 446 | 1 | | | Column
Bottom | 6/20/2002 | 8:45
8:30 | 0.03 | 0.022 | 0.055 | 0.02 | 0.46 | 175
183 | 256
254 | 157
158 | 0.0175 | 4 | 8.7
8.5 | 443
446 | 2 | | | Column | 7/2/2002 | 9:40 | 0.04 | 0.029 | 0.078 | < 0.03 | 0.42 | 181 | 247 | 157 | 0.0149 | 7 | 8.5 | 433 | 2 | | | Bottom | 7/2/2002 | 9:30 | < 0.01 | 0.034 | 0.085 | < 0.01 | 0.45 | 181 | 244 | 157 | | 6 | 8.5 | 433 | 2 | | | Column | 7/15/2002 | 9:05 | 0.36 | 0.086 | 0.154 | 0.17 | 0.76 | 188 | 257 | 161 | 0.0162 | 8 | 8.5 | 450 | 5 | | | Bottom
Column | 7/15/2002
5/28/2003 | 8:55
9:15 | 0.33 | 0.086 | 0.142 | 0.18 | 0.82 | 190
197 | 273 | 163
162 | 0.0021 | 7
< 1 | 8.6
8.3 | 450
465 | 4 | | | Bottom | 5/28/2003 | 9:10 | 0.03 | 0.038 | 0.059 | 0.19 | 0.47 | 197 | | 162 | 0.0021 | < 1 | 8.3 | 466 | i | | | Column | 6/9/2003 | 8:25 | 0.05 | 0.038 | 0.064 | 0.14 | 0.46 | 197 | | 162 | 0.003 | 3 | 8 | 472 | 2 | | | Bottom | 6/9/2003 | 8:10 | 0.05 | 0.04 | 0.065 | 0.14 | 0.7 | 197 | | 162 | 0.005 | 2 | 8.3 | 474 | 2 | | | Column
Bottom | 6/26/2003 | 8:40
8:30 | 0.07 | 0.048 | 0.089 | 0.15
0.16 | 0.58
0.58 | 200 | | 164
164 | 0.005 | 3 4 | 8.3
8.3 | 486
488 | 3 | | | Column | 7/23/2003 | 7:30 | 0.13 | 0.051 | 0.103 | 0.07 | 0.45 | 190 | | 159 | 0.0079 | 7 | 8.4 | 422 | 8 | | | Bottom | 7/23/2003 | 7:20 | 0.14 | 0.05 | 0.089 | 0.07 | 0.48 | 189 | | 158 | | 5 | 8.4 | 419 | 8 | | | Column | 8/5/2003 | 8:30 | 0.08 | 0.003 | 0.098 | 0.02 | 0.57 | 160 | Dim mb | 133 | 0.033 | 48 | 8.4 | 351 | 24 | | | Column | 5/11/2001 | 7:30 | < 0.01 | L n nna | 0.039 | < 0.01 | 0.37 | 183 | 263 | am-Bann
152 | l ck coul | 8 | 8.4 | 438 | 4 | | | Bottom | 5/11/01 | 7:45 | < 0.01 | 0.005 | 0.033 | 0.01 | 0.41 | 184 | 268 | 152 | | 9 | 8.4 | 438 | 4 | | | Column | 5/23/2001 | 7:45 | 0.07 | 0.033 | 0.06 | 0.21 | 0.76 | 191 | 260 | 158 | | 2 | 8.4 | 447 | 1 | | | Bottom | 5/23/01
6/6/2001 | 7:50
7:45 | 0.06 | 0.044 | 0.076 | 0.24 | 0.61 | 192
193 | 258 | 159
161 | 0.0083 | 7 | 8.4
8.4 | 449
457 | 2 | | | Column
Column | 6/20/2001 | 7:45 | 0.19 | 0.031 | 0.034 | 0.04 | 0.5 | 186 | 262
247 | 153 | 0.0062 | 7 | 0.4 | 425 | 6 | | | Bottom | 6/20/2001 | 7:45 | 0.22 | 0.017 | 0.046 | 0.08 | 0.36 | 177 | 253 | 145 | | 9 | | 442 | 7 | | | Column | 7/3/2001 | 8:00 | 0.04 | 0.025 | 0.078 | 0.13 | 0.65 | 192 | 275 | 157 | 0.0264 | 12 | | 446 | 10 | | | Bottom
Column | 7/3/2001 | 8:15
7:45 | 0.19
0.19 | 0.036 | 0.094 | 0.2 | 0.68 | 192
173 | 267
229 | 157
142 | 0.0331 | 12
55 | 8.3 | 427
364 | 10
28 | | | Bottom | 7/12/2001 | 7:45 | 0.19 | 0.006 | 0.104 | 0.03 | 0.62 | 180 | 240 | 148 | 0.0331 | 53 | 8.3 | 397 | 31 | | | Column | 7/25/2001 | 8:15 | 0.33 | 0.014 | 0.084 | 0.07 | 0.4 | 176 | 245 | 148 | 0.0084 | 39 | 8.5 | 407 | 10 | | | Bottom | 7/25/2001 | 8:40 | 0.35 | 0.015 | 0.082 | 0.08 | 0.37 | 179 | 239 | 149 | | 41 | 8.5 | 408 | 10 | | | Column
Bottom | 8/2/2001 | 9:25
9:40 | 0.41 | 0.012 | 0.106 | 0.08 | 0.51 | 183
187 | 227
229 | 150
153 | 0.0121 | 75
109 | 8.2
8.2 | 401
402 | 15
31 | loose lids | | Column | 6/4/2002 | 10:45 | 0.04 | 0.011 | 0.096 | 0.02 | 0.41 | 179 | 250 | 155 | 0.0114 | 6 | 8.7 | 437 | 3 | loose lids | | Bottom | 6/4/2002 | 11:00 | 0.04 | 0.013 | 0.045 | 0.02 | 0.42 | 177 | 243 | 154 | | 5 | 8.7 | 439 | 3 | | | Column | 6/20/2002 | 8:00 | < 0.01 | 0.01 | 0.047 | < 0.01 | 0.69 | 170 | 252 | 154 | 0.0203 | 6 | 8.7 | 428 | 2 | | | Bottom
Column | 6/20/2002
7/2/2002 | 7:45
8:15 | 0.03 | 0.016 | 0.059 | < 0.01 | 0.58 | 169
191 | 250
262 | 156
157 | 0.0183 | 8
26 | 8.7
8.4 | 435
454 | 7 | | | Bottom | 7/2/2002 | 8:00 | 0.11 | 0.02 | 0.114 | 0.06 | 0.92 | 188 | 261 | 157 | 3.0,00 | 28 | 8.4 | 452 | 5 | | | Column | 7/15/2002 | 8:15 | 0.37 | 0.054 | 0.099 | 0.08 | 0.69 | 177 | 230 | 147 | 0.0416 | 23 | 8.4 | 390 | 9 | | | Column | 5/28/2003 | 8:15 | 0.04 | 0.005 | 0.042 | 0.02 | 0.44 | 183
195 | | 155 | 0.017 | 1 | 8.5 | 435
450 | 2 | | | Bottom
Column | 5/28/2003
6/9/2003 | 8:00
7:35 | 0.06 | 0.043 | 0.078 | 0.07 | 0.53 | 173 | | 160
145 | 0.0064 | 5 | 8.3
8.5 | 396 | 2 | | | Bottom | 6/9/2003 | 7:20 | 0.08 | 0.018 | 0.049 | 0.07 | 0.44 | 174 | | 145 | 3,0004 | 3 | 8.4 | 399 | 2 | | | Column | 6/26/2003 | 7:40 | 0.11 | 0.003 | 0.065 | 0.02 | 0.49 | 171 | | 140 | 0.0234 | 10 | 8.3 | 388 | 5 | | | Bottom | 6/26/2003
7/11/2003 | 7:30
7:45 | 0.08 | 0.005 | 0.072 | 0.02 | 0.51 | 175
168 | | 144 | 0.0075
| 14
19 | 8.3 | 404
350 | 7 | panalisad part to title of the | | Column | 17711/2003 | 1.45 | U.13 | 0.003 | 0.042 | 0.06 | 0.32 | 168
 Blan | nks | 138 | 10.0075 | 19 | 6.2 | 1 350 | 8 | received past holding time | | | 5/11/2001 | 9:45 | 0.03 | < 0.003 | < 0.01 | | < 0.03 | 1 | < 5 | 0.82 | | < 1 | 5.7 | < 2 | < 1 | | | | 7/12/2001 | 11:00 | 0.06 | < 0.003 | < 0.01 | < 0.01 | < 0.03 | 2 | < 5 | 1.64 | | < 1 | 5.9 | < 2 | 3 | | | | 8/8/2001 | 10:00 | 0.04 | < 0.003 | | | < 0.03 | 7 | < 5 | 5.74 | | < 1 | 6.4 | < 2 | < 1 | | | | 7/15/2002 | 15:00
11:15 | < 0.02 | < 0.003 | < 0.01 | < 0.01 | 0.71 | 3 | 6
5 | 0.82
2.46 | | < 1 | 5.9
6.2 | < 2 | < 1 | | | | , | | | , 0.000 | | | | Dupli | | • | | | | • | | | | | 6/20/2001 | 7:45 | 0.18 | 0.009 | 0.034 | 0.04 | 0.37 | 187 | 242 | 153 | | 9 | | 422 | 6 | Boundary site | | | 8/2/2001
7/15/2002 | 8:45
10:10 | 0.15
0.13 | 0.039 | 0.112 | 0.05 | 0.64 | 197
182 | 274
256 | 165
161 | | 19
5 | 8.4
8.7 | 457
448 | 13 | loose lids | | | 11/15/2002 | 10:10 | U.13 | U.U.38 | 0.086 | 0.11 | U.68 | 182 | ∠56 | 101 | | _ > _ | 8.7 | 1 448 | 2 | Fenstermaker | 200 | Table 1.9 CPC Intellegency CPC Mary Mary CPC Mary Mary Mary Mary CPC Mary M | Table B-3. | DEQ field | paramete | r samı | oling in Am | erican Fa | alls Reserv | oir, May | 2001 t | o August 2 | 2003. Ter | np = temp | erature, (| Cond = | conductiv | ity, D0 = : | dissolved | oxygen, | Turb = 1 | urbidity. | | | |--|-------------|-----------|----------|--------|-------------|-----------|--|----------|--------|------------|-----------|--|------------|--------|-----------|-------------|-----------|--------------|----------|-----------|-----------|-------| | Times Process Co | ary Point | | | HM6p-0 0.3 9.05 876 288 10.27 | | Depth | Temp | | Cond | DO | Turb | Temp | | Cond | DO | Turb | Temp | | Cond | DO | Turb | Temp | | Cond | DO | Turb | | 1 | Date | (meters) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | | 2 993 374 277 1039 | 11-May-01 | 0.3 | 3 89 973 977 1034 | A | S | B | Total September Total | 9 8.88 871 207 938 | 10 | | | | | | | | | | | | | | | | | | 10.76 | 8.46 | 302 | 11.6 | | | 11 | 12 8.76 8.69 297 9.95 | 13 | | | | | | | | | | | | | 10.48 | 8.00 | 296 | 10.12 | | | | | | | | 14 | 15 | 23-Mey-01 17 | | 15 | | | | 9.79 | | | | | | | | | | | | | | | | | | 18 | | | | | 296 | | | | | | | | | | | | | | | | | | | 23-May 01 | | | 8.56 | | | | | | _ | | | | | _ | | | | - | | | | | | 23-May-01 0.3 | | | | | 296 | | - | | | | | - | | | | | - | | | | | | | 1 137 856 337 836 44 1516 826 383 642 1411 825 356 644 1458 829 357 656 33 1441 857 334 839 1445 825 355 6.36 1408 825 355 6.4 1408 825 357 6.56 43 1405 824 354 6.32 1415 827 357 6.56 43 1415 827 357 6.56 1415 827 357 6.56 1415 827 357 6.56 1415 827 357 6.56 1415 827 357 357 358 368 358 | 23_May ∩1 | | | | | | - | | | - | | - | 14 15 | 8 25 | 356 | 6.40 | | 14.56 | 8 20 | 357 | 7 | | | 2 | ZS-IVIMY-UT | | | | | | | 15 16 | 8 26 | 363 | 6.42 | - | | | | | | | | | | | | 3 | | | | | | | | 10.10 | 0.20 | - 555 | V.72 | | | | | | | | | | | | | S | | | 13.41 | 8.57 | 334 | 8.39 | | 14.45 | 8.25 | 355 | 6.38 | | 14.05 | 8.24 | 354 | 6.32 | | 14.5 | 8.27 | 357 | 6.78 | | | 6 | | | | | 332 | | | | | | | | | | | | | | | | | | | 7 1 221 857 323 867 | | | | | | | | 14.22 | 8.24 | 356 | 6.29 | | | | | | | | | | | | | 8 | 9 | | | | | | | | | | | | | | | | | | 14.09 | 8.19 | 300 | 6.42 | | | 10 | | | | | | | | 13.42 | 8 23 | 341 | 6.26 | | | | | | | | | | | | | 11 | | | | | | | | 10.12 | 0.20 | 011 | 0.20 | | | | | | | | | | | | | 13 | 14 | 15 | 16 | 17 | 6-Jun-01 18 | 6-Jun-01 0.3 14.11 8.14 851 7.06 | | | | | 315 | | | | | | | | | | | | | | | | | | | 1 | 6-Jun-01 | | | | | | | | | | | | | | | | | 14.25 | 8.29 | 360 | 7.48 | | | 3 1402 8.12 350 7.1 | | | | | 351 | | | | | | | | | | | | | | | | | | | 4 14.02 8.11 350 7.08 | 5 | 6 14.01 8.11 350 7.02 | The state of | 8 14 81 350 6.94 | | | | | | | | | | | | | | | | | | 17.20 | 0.21 | 500 | 0.77 | | | 9 13.99 8.1 350 6.87 | 11 | | 9 | | 8.1 | 350 | 6.87 | | | | | | | | | | | | | | | | | | 12 | 13 | | | | | | | - | | | - | | - | | | | | | - | | | | | | 14 | | | | | | | - | | | - | | - | | | | | | | | | | | | 15 | | | | | | | | | | | | | | | | | | | | | | | | 16 | 20-Jun-01 | 2 15.73 8.29 367 5.76 16.55 8.44 374 6.21 17.08 8.46 350 6.29 3 15.54 8.28 365 5.72 16.5 8.42 373 6.06 16.97 8.44 348 5.65 4 15.34 8.26 364 5.73 16.4 8.41 374 6.05 16.34 8.37 355 5.64 5 15.26 8.25 363 5.73 15.84 8.43 372 6.09 16.06 8.34 368 5.66 6 15.22 8.24 363 5.68 15.64 8.42 370 6.11 16 8.32 359 5.57 7 15.17 8.24 363 5.68 15.52 8.41 369 6.02 15.95 8.29 361 5.5 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 9 15. | 20-Jun-01 | | 16.6 | 8.32 | 375 | | | | | | | | | | | | | | _ | | | | | 3 15.54 8.28 365 5.72 16.5 8.42 373 6.06 16.97 8.44 348 5.65 4 15.34 8.26 364 5.73 16.4 8.41 374 6.05 16.34 8.37 355 5.64 5 15.26 8.25 363 5.73 15.84 8.43 372 6.09 16.06 8.34 368 5.66 6 15.22 8.24 363 5.67 15.68 8.42 370 6.11 16 8.32 359 5.57 7 15.17 8.24 363 5.68 15.52 8.41 369 6.02 15.95 8.29 361 5.5 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 9 9 15.15 8.23 363 5.56 15.48 8.41 369 5.96 9 10 15.12 8.23 363 5.5 15.22 8.38 367 6 9 11 <td></td> | 4 15.34 8.26 364 5.73 16.4 8.41 374 6.05 16.34 8.37 355 5.64 5 15.26 8.25 363 5.73 15.84 8.43 372 6.09 16.06 8.34 388 5.66 6 15.22 8.24 363
5.68 15.68 41.369 6.02 15.95 8.29 361 5.5 7 15.17 8.24 363 5.66 15.52 8.41 369 6.02 15.95 8.29 361 5.5 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 5.66 9 15.15 8.23 363 5.62 15.22 8.38 367 6 6 10 15.12 8.22 363 5.5 5 6 15.22 8.38 367 6 6 11 15.07 8.21 363 5.43 8 8.23 8.34 8.29 8.29 8.29 8.29 8.29 8.29 </td <td></td> <td>_</td> <td></td> <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td> <td></td> | | | | | | | | | | | | | | _ | | | | | _ | | | | | 5 15.26 8.25 363 5.73 15.84 8.43 372 6.09 16.06 8.34 368 5.66 6 15.22 8.24 363 5.7 15.6 8.42 370 6.11 16 8.32 359 5.57 7 15.17 8.24 363 5.68 15.52 8.41 369 6.02 15.95 8.29 361 5.5 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 9 15.15 8.23 363 5.62 15.22 8.38 367 6 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 9 15.22 8.38 367 6 | | | | | | | - | | | - | | - | | | | | | | | | | | | 6 15.22 8.24 363 5.7 15.6 8.42 370 6.11 16 8.32 359 5.57 7 15.17 8.24 363 5.68 15.52 8.41 369 6.02 15.95 8.29 361 5.5 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 5.96 9 15.15 8.23 363 5.62 15.22 8.38 367 6 10 15.12 8.22 363 5.5 15.22 8.38 367 6 11 15.07 8.21 363 5.43 15.04 15.04 8.2 362 5.35 13 15.04 8.19 362 5.31 15.04 15.04 8.19 362 5.31 14 15.01 8.18 362 5.31 15.04 15.04 8.19 8.12 15.04 15.04 | | | | | | | | | | + | | | | | | | | | | | | | | 7 | 8 15.14 8.24 363 5.66 15.48 8.41 369 5.96 9 15.15 8.23 363 5.62 15.22 8.38 367 6 10 15.12 8.22 363 5.5 5.5 11 15.07 8.21 363 5.43 12 15.04 8.2 362 5.35 13 15.04 8.19 362 5.31 14 15.01 8.18 362 5.31 | 10 | | | 15.14 | 8.24 | 363 | 5.66 | | | | | | | 15.48 | | | 5.96 | | | | | | | | 11 15.07 8.21 363 5.43 12 15.04 8.2 362 5.35 12 13 15.04 8.19 362 5.31 14 15.01 8.18 362 5.31 14 15.01 8.18 362 5.31 | | | | | | | | | | | | | 15.22 | 8.38 | 367 | 6 | | | | | | | | 12 | | | | | | | - | | | | | - | | | | | | | | | | | | 13 15.04 8.19 362 5.31
14 15.01 8.18 362 5.31 | | | | | | | - | | | | | - | | | | | | 1 | | | | | | 14 15.01 8.18 362 5.31 | | | | | | | <u> </u> | | | <u> </u> | | <u> </u> | | | | | | | 15 14.97 8.17 362 5.32 | | 15 | | | | 5.32 | | | | | | | | | | | | | | | | | 5.84 5.76 5.71 5.7 5.67 10.22 10.34 10.14 8.92 8.84 8.78 8.79 8.71 7.79 7.78 10.5 10.48 10.47 8.78 8.44 6.43 6.21 5.46 5.45 8.5 8.9 4.8 8 7.4 6 5.5 5.8 7.9 8 14.4 15.5 6 5.8 3 7.4 2.6 3.4 5.5 5.8 21.69 8.55 21.7 8.55 21.7 8.55 21.65 8.55 21.57 8.52 21.48 8.49 429 429 429 430 418 417 419 420 420 419 420 422 422 423 423 426 426 427 427 20.69 8.65 20.67 8.64 10 4 2-Aug-01 8-Aug-01 20.67 8.64 20.66 8.64 20.65 8.64 21.89 8.8 21.77 8.86 21.66 8.86 21.48 8.77 21.28 8.76 21.2 8.76 21.19 8.76 21.19 8.76 21.16 8.75 20.9 8.69 20.87 8.69 22.95 8.84 22.95 8.84 22.95 8.84 22.93 8.83 22.47 8.72 21.89 8.69 21.46 8.56 21.28 8.55 21.09 8.49 21.08 8.49 | | Depth | Temp | | | | | | | | r Point | | _ | | e Hole Dra | | | | | nty Bounda | | _ | |-----------|---------|-------|------|----------|--------------|------------|------|-------|----------|-----------|-------|-------|------|------------|------------|-------|-------|------|------------|----------------|----------| | | | | الما | Cond | DO
(madh) | Turb | Temp | n I I | Cond | DO (ma/l) | Turb | Temp | ml l | Cond | DO (m a/l) | Turb | Temp | | Cond | DO (100 or (1) | Tui | | 3-Jul-01 | meters) | (°C) | рН | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | | (u S/cm) | (mg/l) | (NT | | | 0.3 | 21.66 | 8.61 | 427 | 8.34 | 0.5 | | | | | | 22.61 | 8.66 | 426 | 8.42 | 2 | 24.28 | 8.69 | | 9.01 | 12 | | | 1 | 21.56 | 8.61 | 426 | 8.34 | 0.3 | | | | | | 22.55 | 8.66 | 426 | 8.42 | 2.8 | 24.29 | 8.68 | 410 | 9 | 1: | | | 2 | 21.22 | 8.6 | 426 | 8.29 | 0.3 | | | | | | 22.49 | 8.65 | 426 | 8.38 | 2.8 | 24.29 | 8.68 | 409 | 8.96 | 1: | | | 3 | 20.98 | 8.59 | 426 | 8.19 | 0.4 | | | | | | 22.43 | 8.64 | 426 | 8.21 | 2.8 | 24.1 | 8.61 | 417 | 8.13 | 1 | | | 4 | 20.87 | 8.59 | 426 | 8.17 | 0.5 | | | | | | 22.39 | 8.61 | 427 | 8.01 | 3.9 | 22.76 | 8.15 | 402 | 4.13 | 1: | | | 5 | 20.24 | 8.55 | 427 | 7.89 | 0.2 | | | | | | 22.34 | 8.6 | 427 | 8.01 | 4.1 | 22.58 | 8.16 | 399 | 4.25 | 1 | | | 6 | 19.91 | 8.54 | 426 | 7.88 | 1.4 | | | | | | 21.42 | 8.33 | 434 | 5.39 | 7.2 | 22.14 | 7.98 | 415 | 2.87 | | | | 7 | 19.65 | 8.56 | 426 | 8.04 | 1.3 | | | | | | 21.18 | 8.14 | 438 | 4.27 | 10.2 | | | | | _ | | | 8 | 19.31 | 8.5 | 427 | 7.45 | 2.3 | | | | | | | | | | | | | | | | | | 9 | 18.56 | 8.46 | 425 | 7.2 | 1.3 | | | | | | | | | | | | | | | _ | | | 10 | 18.44 | 8.37 | 426 | 6.39 | 0.8 | | | | | | | | | | | | | | | | | L | 11 | 18.24 | 8.38 | 426 | 6.32 | 0.3 | | | | | | | | | | | | | | | | | L | 12 | 17.91 | 8.3 | 427 | 5.63 | 0.3 | | | | | | | | | | | | | | | | | _ | 13 | 17.72 | 8.23 | 429 | 4.91 | 0.3 | | | | | | | | | | | | | | | | | | 14 | 17.68 | 8.24 | 428 | 5.04 | 0.3 | | | | | | | | | | | | | | | ╙ | | 2-Jul-01 | 0.3 | 23.14 | 8.73 | 429 | 7.62 | 0.4 | | | | | | 22.61 | 8.48 | 423 | 5.57 | 15.5 | 22.08 | 8.58 | 349 | 7.06 | 1 6 | | <u> </u> | 1 | 23 | 8.74 | 429 | 7.63 | 0.4 | | | | | | 22.57 | 8.47 | 423 | 5.49 | 16.1 | 22.06 | 8.5 | 356 | 6.93 | | | _ | 2 | 22.82 | 8.74 | 429 | 7.59 | 0.4 | | | | | | 22.54 | 8.47 | 423 | 5.48 | 16.9 | 22.05 | 8.45 | 352 | 6.9 | - 6 | | _ | 3 | 22.74 | 8.73 | 429 | 7.56 | 0.7 | | | | | | 22.54 | 8.47 | 423 | 5.53 | 16.1 | | | | | | | _ | 4 | 22.68 | 8.73 | 429 | 7.5 | 1 | | | | | | 22.54 | 8.48 | 423 | 5.55 | 15.6 | | | | | | | _ | 5 | 22.63 | 8.72 | 429 | 7.44 | 2 | | | | | | 22.53 | 8.48 | 423 | 5.58 | 16.5 | | | | | _ | | <u> </u> | 6 | 22.6 | 8.72 | 429 | 7.42 | 1.5 | | | | | | | | | | | | | | | _ | | <u> </u> | 7 | 22.52 | 8.71 | 429 | 7.4 | 3 | | | | | | | | | | | | | | | | | _ | 8 | 22.44 | 8.7 | 429 | 7.13 | 2.9 | | | | | | | | | | | | | | | _ | | _ | 9 | 22.32 | 8.68 | 428 | 6.92 | 2 | | | | | | | | | | | | | | | _ | | <u> </u> | 10 | 19.87 | 8.3 | 433 | 3.84 | 4 | | | | | | | | | | | | | | | ⊢ | | <u> </u> | 11 | 18.96 | 8.13 | 434 | 2.6 | 6.5 | | | | | | | | | | | | | | | _ | | | 12 | 18.48 | 8.06 | 434 | 1.97 | 8.5 | | | | | | | | | | | | | | | _ | | 9-Jul-01 | 0.3 | 21.29 | 8.69 | 429 | 7.01 | 2.1 | | | | | | | | | | | | | | | - | | <u> </u> | 1 | 21.28 | 8.69 | 429 | 7.03 | 1.2 | | | | | | | | | | | | | | | | | _ | 2 | 21.3 | 8.69 | 429 | 6.96 | 1.3 | | | | | | | | | | | | | | | | | <u> </u> | 3 | 21.3 | 8.68 | 429 | 6.9 | 1.6 | | | | | | | | | | | | | | | _ | | <u> </u> | 4 | 21.29 | 8.68 | 429 | 6.9 | 3.1 | | | | | | | | | | | | | | | _ | | <u> </u> | 5 | 21.29 | 8.68 | 429 | 6.88 | 1.5 | | | | | | | | | | | | | | | | | <u> </u> | 6 | 21.29 | 8.68 | 429 | 6.96 | 6.1 | | | | | | | | | | | | | | | | | \vdash | 7 | 21.28 | 8.68 | 429 | 6.88 | 1.3 | | | | | | | | | | | | | | | _ | | ⊢ | 8 | 21.24 | 8.65 | 430 | 6.61 | 1.6 | | | | | | | | | | | | | | | \vdash | | <u> </u> | 9 | 21.05 | 8.6 | 431 | 5.75 | 2.7 | | | | | | | | | | | | | | | \vdash | | <u> </u> | 10 | 20.72 | 8.48 | 432 | 4.85 | 4.4 | | | | | | | | | | | | | | | - | | <u> </u> | 11 | 20.41 | 8.4 | 434 | 3.67 | 5.5 | | | | | | | | | | | | | | | | | 5-Jul-01 | 12 | 20.01 | 8.17 | 436 | 2.37 | 6.7
2.3 | | | | | | 20.02 | 0.40 | 122 | 6.2 | 47.0 | 20.02 | 0.64 | 277 | 7.50 | Η. | | J-JUI-U I | 0.3 | 21.17 | 8.82 | 426 | 7.86 | | | | | | | 20.02 | 8.48 | 433 | 6.2 | 47.9 | 20.03 | 8.61 | 377
377 | 7.52 | 2 | | \vdash | 1 | 21.14 | 8.82 | 426 | 7.83 | 3.5 | | _ | | | - | 20.02 | 8.48 | 433 | 6.16 | 49.8 | 20.06 | 8.61 | | 7.5 | - | | \vdash | 2 | 21.09 | 8.8 | 426 | 7.83 | 4.4
4.8 | | _ | | | | 20.03 | 8.48 | 433 | 6.17 | 49.6 | 20.04 | 8.6 | 377
385 | 7.49 | ۱. | | <u> </u> | 3 | 21.08 | 8.81 | 426 | 7.8 | | | | | | | 19.98 | 8.47 | 433 | 6.09 | 52.3 | 19.91 | 8.56 | 385 | 7.41 | + | | ⊢ | 4 | 21.06 | 8.81 | 426 | 7.77 | 3.1 | | | | | | 19.93 | 8.46 | 433 | 5.92 | 53.3 | | | | | \vdash | | - | 5 | 21.05 | 8.81 | 426 | 7.8 | 3 | | | | | | 19.87 | 8.42 | 433 | 5.56 | 58.5 | | | | | _ | | <u> </u> | 6
7 | 20.98 | 8.79 | 427 | 7.4 | 3.8
7.5 | | | | | | | | | | | | | | | \vdash | | <u> </u> | 8 | 20.74 | 8.68 | 429 | 5.84 | 7.5 | | - | | | - | | _ | | | | | | | | \vdash | 8.08 7.97 7.63 6.45 4.32 7.47 6.89 3.91 418 418 419 419 415 430 432 442 21 8.58 21 8.58 20.98 8.56 20.68 8.44 19.01 8.15 22.32 8.43 22.33 8.42 22.26 8.38 21.45 8.07 8.2 7.9 7.3 8.2 7.9 9.4 8.19 8.17 8.05 7.61 7.23 202 423 423 424 424 425 29.3 18.18 8.35 26.3 18.13 8.35 32.7 18.13 8.35 401 1770 26.7 26.9 29.6 48.1 366 366 366 7.16 7.14 7.14 65 80 | Table B-3. | Continued. |------------------------|-------------------|----------------|--------------|------------------|---------------|---------------|----------------|--------------|------------------|--------------|---------------|----------------|--------------|------------------|--------------|---------------|----------------|--------------|------------------|----------------|---------------| | | | Tomp | | Dam | - DO | | Tomp | <u>⊦e</u> | nstermake
I | | | Tomp | Little | e Hole Dra | | | Tomp | Cou | nty Bounda | | | | Doto | Depth
(motors) | Temp
(°C) | pН | Cond
(u S/cm) | DO
(mg/l) | Turb
(NTU) | Temp
(°C) | pН | Cond
(u S/cm) | DO
(mg/l) | Turb
(NTU) | Temp
(°C) | pН | Cond
(u S/cm) | DO
(mg/l) | Turb
(NTU) | Temp
(°C) | pН | Cond
(u S/cm) | DO
(mg/l) | Turb
(NTU) | | Date
4-Jun-02 | (meters)
0.3 | 17.4 | 8.72 | 461 | 9.8 | 0 | 17.94 | 8.81 | 460 | 10.4 | 0 | 18.19 | 8.43 | 462 | 7.37 | 0 | 18.65 | 8.67 | 448 | 9.63 | 0 | | 4-Juli-02 | 1 | 17.15 | 8.73 | 461 | 9.81 | 0 | 16.55 | 8.82 | 460 | 10.64 | 0 | 17.83 | 8.42 | 461 | 7.34 | 0 | 18.41 | 8.67 | 449 | 9.03 | 0.2 | | | 2 | 16.25 | 8.74 | 461 | 10.01 | Ů | 15.81 | 8.83 | 459 | 10.83 | ŏ | 17.49 | 8.41 | 461
 7.36 | 0 | 18.23 | 8.64 | 452 | 9.48 | 0.1 | | | 3 | 15.25 | 8.78 | 460 | 10.22 | 0 | 15.55 | 8.83 | 459 | 10.82 | 0 | 17.37 | 8.41 | 460 | 7.36 | 0 | 18.17 | 8.63 | 453 | 9.3 | 0 | | | 4 | 15.23 | 8.78 | 460 | 10.25 | 0 | 15.41 | 8.82 | 459 | 10.76 | 0 | 17.28 | 8.41 | 460 | 7.36 | 0 | 18.12 | 8.64 | 451 | 9.23 | 0.4 | | | 5 | 15.21 | 8.78 | 460 | 10.25 | 0 | 15.34 | 8.81 | 459 | 10.57 | 0 | 17.26 | 8.4 | 460 | 7.33 | 0 | 18.11 | 8.63 | 451 | 9.21 | 0.6 | | | 6 | 15.2 | 8.78 | 460 | 10.22 | 0 | 15.29 | 8.78 | 460 | 10.25 | 0 | 17.17 | 8.4 | 460 | 7.29 | 0 | 18.09 | 8.61 | 451 | 9.2 | 0.9 | | 1 | 7 8 | 14.92
14.88 | 8.78
8.76 | 460
461 | 10.28
9.97 | 0 | 15.03
14.88 | 8.71
8.67 | 461
461 | 9.52
8.92 | 0 | 17.15
17.14 | 8.39 | 460
460 | 7.3
7.3 | 0 | | | | | \vdash | | 1 | 9 | 14.84 | 8.74 | 461 | 9.69 | 0 | 14.76 | 8.67 | 462 | 8.99 | 0 | 17.04 | 8.4 | 460 | 7.33 | 0 | | | | | \vdash | | | 10 | 14.75 | 8.72 | 462 | 9.42 | 0 | 14.53 | 8.64 | 463 | 8.73 | 0 | | | | | | | | | | | | | 11 | 14.68 | 8.74 | 461 | 9.71 | 0 | 14.5 | 8.62 | 463 | 8.63 | 0 | | | | | | | | | | | | | 12 | 14.58 | 8.74 | 462 | 9.68 | 0 | 14.31 | 8.6 | 464 | 8.65 | 0 | | | | | | | | | | | | | 13
14 | 14.41 | 8.73
8.73 | 462
463 | 9.51
9.49 | 0 | 13.55 | 8.52 | 466 | 7.49 | 0 | | | | | | | | | | \vdash | | | 15 | 14.38
14.37 | 8.72 | 463 | 9.49 | 0 | | | | | | | | | | | | | | | | | | 16 | 14.27 | 8.69 | 464 | 9.16 | 0.5 | | | | | | | | | | | | | | | | | 20-Jun-02 | 0.3 | 17.26 | 8.63 | 462 | 9.19 | 0 | | | | | | 17.82 | 8.85 | 457 | 11.24 | 0 | 18.3 | 8.95 | 437 | 11.4 | 0 | | | 1 | 17.26 | 8.63 | 462 | 9.19 | 0 | | | | | | 17.82 | 8.85 | 457 | 11.21 | 0 | 18.3 | 8.95 | 437 | 11.39 | 0 | | | 2 | 17.25 | 8.63 | 462 | 9.17 | 0 | | | | | | 17.8 | 8.84 | 457 | 11.19 | 0 | 18.29 | 8.95 | 437 | 11.36 | 0 | | - | 3 | 17.24
17.25 | 8.63
8.63 | 462
462 | 9.17
9.16 | 0 | | | | | | 17.83
17.78 | 8.84 | 457
457 | 11.2
11 | 0 | 18.29
18.22 | 8.95
8.93 | 438
441 | 11.29
11.23 | 0 | | 1 | 5 | 17.24 | 8.63 | 462 | 9.15 | 0 | | | | | | 17.69 | 8.8 | 458 | 10.85 | 0 | 18.17 | 8.92 | 443 | 11.07 | 0 | | | 6 | 17.24 | 8.62 | 462 | 9.14 | 0 | | | | | | 17.54 | 8.76 | 459 | 10.41 | 0 | 18.05 | 8.88 | 447 | 10.87 | 0 | | | 7 | 17.23 | 8.62 | 462 | 9.11 | 0 | | | | | | 17.18 | 8.69 | 459 | 9.76 | 0 | 17.61 | 8.84 | 454 | 10.65 | 0.4 | | | 8 | 17.23 | 8.62 | 462 | 9.11 | 0 | | | | | | 17.13 | 8.66 | 459 | 9.54 | 0 | | | | | \sqcup | | | 9 | 17.23
17.21 | 8.61 | 462 | 9.1 | 0 | | | | | | | | | | | | | | | \vdash | | | 10
11 | 17.17 | 8.61
8.6 | 462
462 | 9.02 | 0 | | | | | | | | | | | | | | | \vdash | | | 12 | 17.09 | 8.57 | 462 | 8.82 | 0 | | | | | | | | | | | | | | | | | | 13 | 17.04 | 8.55 | 462 | 8.68 | 0 | | | | | | | | | | | | | | | | | | 14 | 16.69 | 8.49 | 464 | 8.12 | 0 | | | | | | | | | | | | | | | | | 0.14.00 | 15 | 16.62 | 8.48 | 464 | 8.01 | 0 | 22.44 | 0.07 | 405 | 0.75 | _ | 20.54 | 0.05 | 454 | 0.04 | 0 | 24.42 | 0.05 | 470 | 7.04 | 40.0 | | 2-Jul-02 | 0.3 | 19.29
18.38 | 8.46
8.5 | 471
470 | 5.69
5.92 | 0 | 22.11 | 8.87
8.9 | 465
464 | 8.75
8.95 | 0 | 20.54
20.56 | 8.85
8.84 | 451
451 | 8.21
8.2 | 0 | 21.13 | 8.65
8.66 | 472
473 | 7.34
7.3 | 10.6
11.3 | | | 2 | 18.36 | 8.49 | 470 | 6 | 0 | 20.77 | 8.94 | 463 | 9.18 | 0 | 20.56 | 8.84 | 451 | 8.19 | 0 | 21.13 | 8.67 | 472 | 7.29 | 11.7 | | | 3 | 18.11 | 8.48 | 470 | 5.76 | 0 | 20.55 | 8.91 | 464 | 8.84 | 0 | 20.54 | 8.84 | 451 | 8.16 | 0 | 21.13 | 8.68 | 473 | 7.3 | 11.2 | | | 4 | 17.6 | 8.38 | 471 | 4.62 | 0 | 20.4 | 8.92 | 464 | 8.92 | 0 | 20.54 | 8.88 | 451 | 8.15 | 0 | 21.11 | 8.69 | 471 | 7.29 | 13.2 | | | 5 | 17.5 | 8.29 | 473 | 3.52 | 0 | 20.21 | 8.86 | 465 | 8.02 | 0 | 20.53 | 8.83 | 451 | 8.14 | 0 | 21.07 | 8.75 | 467 | 7.4 | 12.6 | | - | 6
7 | 17.42
17.33 | 8.25
8.21 | 473
473 | 3.1
2.32 | 0 | 20.11 | 8.85
8.87 | 465
464 | 7.99
8.26 | 0 | 20.49 | 8.81 | 450
450 | 8.11
8.09 | 0.1 | 21.04 | 8.77 | 465 | 7.4 | 15 | | | 8 | 17.28 | 8.17 | 474 | 2.07 | 0 | 20.03 | 8.87 | 465 | 8.27 | Ö | 20.47 | 8.7 | 450 | 8.1 | 0 | | | | | | | | 9 | 17.11 | 8.19 | 474 | 2.01 | 0 | 19.98 | 8.86 | 465 | 8.14 | Ö | | | ,,,,, | 0 | | | | | | | | | 10 | 17.11 | 8.19 | 474 | 2.02 | 0 | 19.96 | 8.85 | 465 | 8.08 | 0 | | | | | | | | | | | | | 11 | 17.11 | 8.2 | 475 | 1.89 | 0 | 19.87 | 8.85 | 465 | 8.06 | 0.1 | | | | | | | | | | \vdash | | | 12
13 | 17.09
17.08 | 8.22
8.23 | 475
475 | 1.83
1.81 | 0 | | | | | | | | | | | | | | | <u> </u> | | 15 Jul 02 ¹ | 0.3 | 24.3 | 8.78 | 357 | 8.46 | 0 | 23.54 | 8.73 | 359 | 8.25 | 0 | 23.67 | 8.52 | 363 | 6.59 | 2.9 | 23.99 | 8.29 | 317 | 6.94 | 7.7 | | 10 001 02 | 1 | 24.07 | 8.78 | 357 | 8.48 | 3.2 | 23.53 | 8.73 | 359 | 8.22 | 0 | 23.62 | 8.52 | 363 | 6.58 | 1.3 | 23.99 | 8.29 | 317 | 6.92 | 7.9 | | | 2 | 23.67 | 8.72 | 358 | 7.73 | 1.5 | 23.5 | 8.72 | 359 | 8.16 | 0 | 23.59 | 8.51 | 362 | 6.59 | 0 | 24.01 | 8.3 | 317 | 6.9 | 8.3 | | | 3 | 23.56 | 8.65 | 360 | 6.87 | 0 | 23.44 | 8.7 | 360 | 7.99 | 0 | 23.52 | 8.51 | 362 | 6.67 | 1.6 | 24.01 | 8.31 | 317 | 6.9 | 8.3 | | } | <u>4</u>
5 | 2304 | 8.5
8.39 | 362
364 | 5.4
4.2 | 0 | 23.43 | 8.69
8.68 | 360
360 | 7.87
7.71 | 0 | 23.5
23.48 | 8.5
8.49 | 362
362 | 6.69 | 1.5 | 23.96 | 8.32 | 318 | 6.84 | 8.5 | | | 6 | 21.61 | 8.26 | 365 | 3.07 | 0 | 23.35 | 8.66 | 360 | 7.45 | 0 | 20.40 | 0.40 | 552 | 0.70 | <u> </u> | | | | | | | | 7 | 21.58 | 8.26 | 365 | 3.11 | 0 | 23.25 | 8.65 | 361 | 7.28 | Ö | | | | | | | | | | | | | 8 | 21.49 | | 366 | 2.93 | 0 | 23.09 | 8.6 | 361 | 7.02 | 0 | | | | | | | | | | | | | 9 | 21.15 | | 366 | 2.3 | 0 | 22.56 | 8.41 | 364 | 5.01 | 0 | | | | | - | | _ | | | \vdash | | | 10
11 | 20.95 | 8.13
8.11 | 366
367 | 2
1.75 | 0 | | | | | | | | | | - | | - | | | | | 31-Jul-02 | 0.3 | 20.83 | 8.76 | 457 | 9.45 | 14.6 | | | | | | | | | | 1 | | | | | | | 31 001 02 | 1 | 22.02 | 8.74 | 457 | 9.27 | 5 | | | | | | | | | | | | | | | | | | 2 | 22.02 | 8.73 | 457 | 9.13 | 3 | | | | | | | | | | | | | | | | | | 3 | 22.02 | 8.73 | 457 | 9.26 | 4.3 | | | | | | | | | | | | | | | | | | 4 | 22.02 | 8.74 | 457 | 9.16 | 5 | | | | | | | | | | - | | | | | - | | - | 5
6 | 22
21.95 | 8.71
8.6 | 457
457 | 9.05
8.35 | 3 | | | | | | | | | | 1 | | | | | - | | | 7 | 21.53 | 8.44 | 462 | 6.16 | 0 | | | | | | | | | | | | | | | | | | 8 | 21.4 | 8.44 | 461 | 6.02 | 1 | | | | | | | | | | | | | | | | | 1 | 9 | 21.37 | | 461 | 5.98 | 1.9 | | | | | | | | | | | | | | | | | Table B-3. Continued | |----------------------| |----------------------| | Table B-3. | Continued. |-----------------------|------------|----------------|--------------|------------|----------------|------------|----------------|--------------|------------|--------------|-----------|----------------|--------------|--|--------------|-------|----------------|--------------|------------|---------------|------------| | | | T I | | Dam | | | T | Fer | nstermake | | | T | Little | e Hole Dra | | | T | Cou | nty Bounda | • | | | _ | Depth | Temp | | Cond | DO | Turb | Temp | | Cond | DO | Turb | Temp | | Cond | DO | Turb | Temp | l | Cond | DO | Turb | | Date | (meters) | (°C) | pH
0.74 | (u S/cm) | (mg/l) | (NTU) | (°C) | pН | (u S/cm) | (mg/l) | (NTU) | (°C) | pH | (u S/cm) | (mg/l) | (NTU) | (°C) | pH | (u S/cm) | (mg/l) | (NTU) | | 28-May-03 | 0.3 | 16.86
16.83 | 8.71
8.71 | 452
452 | 9.8
9.81 | | | | | | | 16.69
16.68 | 8.39
8.39 | 458
458 | 7.97
7.96 | | 19.36
19.38 | 8.72
8.72 | 423
423 | 10.82
10.8 | | | | 2 | 16.83 | 8.71 | 452 | 9.8 | | | | | | | 16.68 | 8.39 | 458 | 7.96 | | 19.33 | 8.72 | 424 | 10.76 | | | | 3 | 16.81 | 8.71 | 452 | 9.8 | | | | | | | 16.64 | 8.39 | 458 | 7.94 | | 19.18 | 8.7 | 426 | 10.61 | | | | 4 | 16.77 | 8.71 | 452 | 9.81 | | | | | | | 16.58 | 8.39 | 458 | 7.92 | | 18.83 | 8.67 | 432 | 10.48 | | | | 5 | 16.7 | 8.71 | 452 | 9.82 | | | | | | | 16.51 | 8.39 | 458 | 7.86 | | 17.87 | 8.66 | 428 | 10.38 | | | | 6 | 16.65 | 8.71 | 452 | 9.84 | | | | | | | 16.1 | 8.36 | 458 | 7.7 | | 16.82 | 8.49 | 445 | 9.45 | | | | 7 | 16.57 | 8.72 | 452 | 9.86 | | | | | | | 15.28 | 8.36 | 458 | 7.52 | | 15.92 | 8.33 | 450 | 8.35 | | | | 8 | 14.53 | 8.71 | 451 | 10.22
10.16 | | | | | | | 14.52 | 8.32 | 459 | 7.11 | | 15.62 | 8.28 | 451 | 8.24 | | | | 10 | 13.77
12.75 | 8.69
8.67 | 451
450 | 9.96 | | | | | | | 14.39
13.66 | 8.29
7.94 | 459
471 | 6.71
4.11 | | | | | | | | | 11 | 11.91 | 8.56 | 452 | 8.96 | | | | | | | 13.00 | 7.34 | 471 | 4.11 | | | | | | | | | 12 | 11.81 | 8.57 | 451 | 9.02 | | | | | | | | | | | | | | | | | | | 13 | 11.8 | 8.56 | 452 | 8.93 | | | | | | | | | | | | | | | | | | | 14 | 11.67 | 8.54 | 452 | 8.71 | | | | | | | | | | | | | | | | | | | 15 | 11.56 | 8.51 | 452 | 8.41 | | | | | | | | | | | | | | | | | | | 16 | 11.47 | 8.47 | 452 | 8.28 | | | | | | | 47.00 | 0.40 | 450 | 7.45 | | 10.01 | 0.07 | 007 | 0.00 | | | 9-Jun-03 ² | 0.3 | 17.74
17.74 | 8.5
8.49 | 460
459 | 8.12
8.12 | | | | | | | 17.96
17.96 | 8.48
8.47 | 452
452 | 7.15
7.18 | | 18.24
18.28 | 8.67
8.67 | 387
387 | 8.02
8.02 | | | | 2 | 17.74 | 8.5 | 460 | 8.12 | | | | | | | 17.95 | 8.48 | 452 | 7.10 | | 18.27 | 8.67 | 387 | 8.04 | | | | 3 | 17.72 | 8.5 | 459 | 8.08 | | | | | | | 17.85 | 8.47 | 452 | 7.29 | | 18.28 | 8.68 | 387 | 8.03 | | | | 4 | 17.69 | 8.5 | 460 | 8.08 | | | | | | | 17.72 | 8.48 | 454 | 7.09 | | 18.28 | 8.68 | 387 | 8.01 | | | | 5 | 17.54 | 8.48 | 460 | 8.12 | | | | | | | 17.52 | 8.46 | 455 | 6.97 | | 18.27 | 8.66 | 384 | 7.96 | | | | 6 | 17.11 | 8.47 | 460 | 7.98 | | | | | | | 17.18 | 8.43 | 459 | 6.78 | | 18.26 | 8.68 | 383 | 7.96 | | | | 7 | 16.96 | 8.47 | 460 | 8.04 | | | | | | | 16.63 | 8.38 | 462 | 6.53 | | 18.23
 8.69 | 383 | 7.89 | | | | 8 | 16.87
16.82 | 8.46
8.47 | 460
460 | 7.97
8.05 | | | | | | | 16.56 | 8.39 | 462 | 6.43 | | 1 | | | | | | | 10 | 16.79 | 8.47 | 460 | 8.11 | | | | | | | | | | | | | | | | | | | 11 | 16.78 | 8.48 | 460 | 8.15 | | | | | | | | | | | | | | | | | | | 12 | 16.64 | 8.46 | 460 | 7.81 | | | | | | | | | | | | | | | | | | | 13 | 16.58 | 8.44 | 461 | 7.68 | | | | | | | | | | | | | | | | | | | 14 | 16.58 | 8.44 | 460 | 7.74 | | | | | | | | | | | | | | | | | | 20 1 00 | 15 | 16.55 | 8.44 | 460 | 7.73 | | 40.00 | 0.45 | 40.4 | 7.00 | | 10.11 | 0.44 | 400 | 7.40 | 0.7 | 10.00 | 0.40 | 050 | 0.0 | 4.0 | | 26-Jun-03 | 0.3 | 18.52
18.47 | 8.52
8.52 | 464
464 | 7.91
7.81 | 0 | 18.23
18.23 | 8.45
8.45 | 464
465 | 7.33
7.34 | 0 | 18.14
18.07 | 8.44
8.43 | 462
462 | 7.43
7.31 | 0.7 | 16.02
16.01 | 8.46
8.45 | 356
356 | 9.3
9.4 | 1.9
2.1 | | | 2 | 18.27 | 8.51 | 463 | 7.76 | 0 | 18.2 | 8.45 | 464 | 7.13 | 0 | 17.79 | 8.42 | 462 | 7.25 | 0.9 | 16.01 | 8.48 | 358 | 9.56 | 2.1 | | | 3 | 18.22 | 8.5 | 464 | 7.67 | 0 | 18.16 | 8.44 | 464 | 7.3 | Ŏ | 17.77 | 8.42 | 462 | 7.16 | 0.5 | 15.75 | 8.62 | 374 | 10.25 | 6.4 | | | 4 | 18.2 | 8.5 | 464 | 7.55 | 0 | 18.14 | 8.44 | 464 | 7.18 | 0 | 17.73 | 8.4 | 461 | 6.99 | 0.7 | 14.86 | 8.52 | 382 | 9.85 | 7 | | | 5 | 18.17 | 8.49 | 464 | 7.44 | 0 | 18.08 | 8.41 | 464 | 6.9 | 0 | 17.6 | 8.35 | 461 | 6.57 | 1.3 | 14.62 | 8.54 | 388 | 9.58 | 7 | | | 6 | 18.15 | 8.48 | 464 | 7.41 | 0 | 18.05 | 8.39 | 464 | 6.82 | 0 | 17.58 | 8.33 | 462 | 6.31 | 1.4 | | | | | | | | 7 | 18.12 | 8.47 | 464 | 7.35 | 0.2 | 18.02 | 8.39 | 465 | 6.76 | 0.1 | 17.48 | 8.12 | 456 | 4.26 | 8.8 | | | | | | | | 8 | 18.06
18 | 8.46
8.44 | 464
464 | 7.23 | 0 | 17.98
17.96 | 8.38
8.37 | 465
466 | 6.67 | 0.4 | | | | | | | | | | | | | 10 | 17.94 | 8.43 | 464 | 6.99 | 0.3 | 17.93 | 8.37 | 466 | 6.61 | 1 | | | | | | | | | | | | | 11 | 17.92 | 8.41 | 465 | 6.85 | 0.5 | 17.35 | 0.57 | 400 | 0.01 | <u> </u> | | | | | | | | | | | | | 12 | 17.9 | 8.4 | 465 | 6.68 | 1 | | | | | | | | | | | | | | | | | | 13 | 17.87 | 8.38 | 465 | 6.66 | 0.7 | | | | | | | | | | | | | | | | | 11-Jul-03 | 0.3 | 21.87 | 8.69 | 456 | | 0.4 | | | | | | | | | | | 20 | 8.43 | 348 | | 9.1 | | | 1 | 21.87 | 8.69 | 456 | | 1.1 | | | | | | | | | | | 20.01 | 8.42 | 348 | | 9.8 | | | 1.5 | 24.00 | 0.60 | 4EG | | 0.3 | | | | | | | | | | | 20.03 | 8.42 | 348 | | 9.7 | | | 3 | 21.86
21.83 | 8.69
8.68 | 456
456 | | 0.3 | | | | | | | | | 1 | | | | | | | | | 4 | 21.03 | 8.66 | 456 | | 0.8 | | | | | | | | | | | | | | | | | | 5 | 21.78 | 8.66 | 456 | | 0.5 | | | | | | | | | | | | | | | | | | 6 | 21.72 | 8.62 | 457 | | 0.6 | | | | | | | | | | | | | | | | | | 7 | 21.6 | 8.59 | 457 | | 2.7 | | | | | | | | | - | | | | | | | | | 8
9 | 21.56
21.3 | 8.58 | 457
457 | | 3.3
0.7 | | | | | | | | | - | | - | | | | | | | 10 | 21.3 | 8.57
8.54 | 457 | | 0.7 | | | | | | | | | | | 1 | | | | | | 23-Jul-03 | 0.3 | 24.78 | 8.71 | 440 | 8.86 | 2.4 | 24.72 | 8.84 | 436 | 10.37 | 12.1 | 24.61 | 8.48 | 425 | 7.4 | 6.7 | | | | | | | | 1 | 24.77 | 8.71 | 440 | 8.84 | 1.9 | 24.71 | 8.84 | 436 | 10.33 | 6.1 | 24.6 | 8.48 | 425 | 7.36 | 8.1 | | | | | | | | 2 | 24.66 | 8.7 | 440 | 8.69 | 4.7 | 24.68 | 8.83 | 436 | 10.2 | 6.9 | 24.61 | 8.48 | 425 | 7.37 | 7.6 | | | | | | | | 3 | 23.83 | 8.63 | 439 | 8.18 | 2.4 | 24.59 | 8.78 | 437 | 9.54 | 15.8 | 24.6 | 8.45 | 421 | 7.29 | 7 | | | | | | | | 4 | | 8.51 | 437 | 7.28 | 1.9 | 24.46 | 8.69 | 437 | 8.16 | 7.5 | | | | - | | | | | | | | | 5 | 23.37 | 8.36 | 428 | 5.95 | 0.8 | 24.11 | 8.61 | 431 | 7.6 | 0.9 | | | | - | | | | | | | | | 6
7 | 23.24
23.08 | 8.3 | 421
420 | 5.57
4.72 | 0.7 | 23.94 | 8.52
8.38 | 428
428 | 6.66
5.27 | 6 | | | | | | | | | | | | | 8 | | 8.03 | | 3.37 | 1 | 20.14 | 0.50 | 720 | J.21 | - | | | | | | | _ | | | | | | 9 | | 7.97 | 430 | 2.67 | 1 | | | | | | | | | | | | | | | | | 5-Aug-03 | 0.3 | | 8.48 | 403 | 7.53 | 10 | 22.94 | 8.48 | 384 | 7.29 | 17 | 21.16 | 8.42 | 347 | 8.58 | 30 | | | | | | | 1 | 1 | 23.2 | 8.48 | 403 | 7.44 | 11 | 22.95 | 8.47 | 384 | 7.29 | 14 | 21.16 | 8.41 | 347 | 8.56 | 30.2 | | | | | | | | 2 | | 8.48 | 403 | 7.49 | 13.1 | 22.94 | 8.46 | 384 | 7.41 | 14.2 | 21.16 | 8.38 | 347 | 8.64 | 31 | | | | | | | | 3 | | 8.47 | 403 | 7.4 | 8.7 | 22.96 | 8.46 | 384 | 7.47 | 10.6 | | | | - | | 1 | | | | | | | 4 | | 8.47 | 403 | 7.41 | 14.2 | 22.96 | 8.44 | 384 | 7.91 | 28 | - | | | | | | - | | | | | | 5
6 | 23.2
23.17 | 8.47
8.46 | 402
403 | 7.43
7.39 | 7.1
5.9 | | | | | | | | | | | 1 | | | | | | | 7 | | 8.45 | | 7.52 | 6.5 | | | | | | | | | | | | | | | | | 1 to orbitality ob a | , | 20.2 | U.7J | 702 | 1.02 | | a alibrata : | | | | f 1000 us | | | | | | | | | | 1 | ¹turbidity had not been calibrated recently and conductivity was only calibrated with 447 uS/cm instead of 1000 uS/cm resulting in conductivity levels below what was normally observed ²recalibrated barometric pressure, difference was approximately 5 mm (sonde was reading about 5 mm high) Table B-4. DEQ Secchi disk data, May 2001 to August 2003. | Table D-4. DE | G OCCCIII GI | on data, ma | y 200 i to /\ | agasi zooo. | · | | | |---------------|--------------|-------------|-------------------|-------------|--------------|-------------|------------------| | | | | | | Depth | (m) | | | | Elevation | Storage | | | | | County | | | at forebay | capacity | Percent | | Fenstermaker | Little Hole | Boundary | | Date | (ft) | (acre-feet) | full ¹ | Dam | Point | Draw Point | Pt | | 11 May 01 | 4351.6 | 1,508,449 | 90.3% | 1.1 | | 1.1 | 1.1 | | 23-May-01 | 4348.4 | 1,335,724 | 79.9% | 3.5 | | 6 | 6.5 | | 6-Jun-01 | 4344.3 | 1,128,509 | 67.5% | 3.9 | | | 1.9 | | 20-Jun-01 | 4340.5 | 958,014 | 57.3% | 6.8 | | 3.4 | 1.1 | | 3-Jul-01 | 4335.4 | 749,628 | 44.9% | 6.1 | | 2.9 | 0.9 | | 12-Jul-01 | 4332.1 | 633,090 | 37.9% | 5.25 | | 0.95 | 0.3 | | 19-Jul-01 | 4330.1 | 566,095 | 33.9% | 3.9 | | | | | 25-Jul-01 | 4327.8 | 495,087 | 29.6% | 2.3 | | 0.4 | 0.4 | | 2-Aug-01 | 4324.0 | 389,744 | 23.3% | 2.2 | | 0.5 | 0.5 | | 8-Aug-01 | 4321.0 | 312,849 | 18.7% | 2.4 | 1.7 | 0.9 | | | 4-Jun-02 | 4344.1 | 1,120,335 | 67.0% | 2.1 | 2.25 | 8.3 | 1.95 | | 20-Jun-02 | 4339.9 | 932,542 | 55.8% | 4.5 | | 5.5 | 1.9 | | 2-Jul-02 | 4335.6 | 757,527 | 45.3% | 6.2 | 4 | 4 | 0.8 | | 15-Jul-02 | 4329.4 | 545,684 | 32.7% | 2.3 | 1.9 | 1.5 | 0.6 | | 31-Jul-02 | 4323.7 | 380,378 | 22.8% | 1.6 | | | | | 28-May-03 | 4343.5 | 1,093,096 | 65.4% | 4.5 | | 7.5 | 3.5 ² | | 9-Jun-03 | 4339.9 | 932,141 | 55.8% | 5 | | 6.5 | 3.5 | | 26-Jun-03 | 4333.6 | 685,208 | 41.0% | 6 | 6 | 4 | 1.6 | | 11-Jul-03 | 4326.9 | 469,218 | 28.1% | 3.1 | | | 0.8 | | 23-Jul-03 | 4322.1 | 341,203 | 20.4% | 3 | 1.75 | 1.25 | | | 5-Aug-03 | 4318.0 | 246,330 | 14.7% | 2 | 0.8 | 0.5 | | ¹based on full storage capacity of 1,671,300 acre-feet at 4,354.5 ft elevation (from Bureau of Reclamation website a) ²estimate This Page Intentionally Left Blank. Table B-5. Results of phytoplankton sampling by DEQ in American Falls Reservoir in 2001. The following columns, common to all samples, were left out of the table: calculation type = phytoplankton - grab, replicate = 1, fraction = none, biovolume = no, taxa level = species, organism = algae, highlighted transfer of the table in the phytoplankton phytoplankto | | Sample | Taxa | | | | | | | | | | Customer | | Relative | Algal cell | Relative | |--------------|-----------|----------------|----------------------------|-------------------|-----------------------------------|--|------------------------------|--------------------|----------------|--------------------|--------------------|----------|---------------|---------------|---------------|----------| | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | concentration | | |)am | 6/6/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 19.0697 | 0.04837584 | 19.0697 | 0.0479 | | Dam | 6/6/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 6.5757 | 0.01668118 | 6.5757 | 0.0165 | | Dam | 6/6/2001 | 2071 | Chlorophyta | Chlorophyceae | Chlorococcales | Characiaceae | Characium | limneticum | | | Cell-Nonmotile | Cells/ml | 0.6576 | 0.00166819 | 0.6576 | 0.0016 | | Dam | 6/6/2001 | 2462 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Quadrigula | lacustris | | | Colonial-Nonmotile | Cells/ml | 1.3151 | 0.00333613 | 3.9454 | 0.0099 | |)am | 6/6/2001 | 1115 | Bacillariophyta | | Cymbellales | Cymbellaceae | Cymbella | minuta | | | Cell-Nonmotile | Cells/ml | 0.6576 | 0.00166819 | 0.6576 | 0.0016 | | Dam | 6/6/2001 | 101930 | Chlorophyta | Chlorophyceae | Ulotrichles | Ulotrichaceae | Geminella | interrupta | | | Filament | Cells/ml | 0.6576 | 0.00166819 | 1.3151 | 0.0033 | | am | 6/6/2001 | 1214 | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | cryptocephala | | | Cell-Motile | Cells/ml | 0.6576 | 0.00166819 | 0.6576 | 0.0016 | | Dam | 6/6/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 43.4057 | 0.11011119 | 43.4057 | 0.1092 | |)am | 6/6/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 17.3623 | 0.04404453 | 17.3623 | 0.0436 | | am | 6/6/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 234.3908 | 0.59460049 | 234.3908 | 0.5896 | |)am | 6/6/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | | ,,,,,, | | >1 um spherical | Cell-Nonmotile |
Cells/ml | 17.3623 | 0.04404453 | 17.3623 | 0.0436 | | Dam | 6/6/2001 | 7140 | Miscellaneous | | | | | | | Microflagellate | Cell-Motile | Cells/ml | 26.0434 | 0.06606666 | 26.0434 | 0.0655 | | Dam | 6/6/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 17.3623 | 0.04404453 | 17.3623 | 0.0436 | | Dam | 6/6/2001 | 1220 | Bacillariophyta | | Bacillarales | Bacillariaceae | Nitzschia | | | | Cell-Motile | Cells/ml | 8.6811 | 0.02202214 | 8.6811 | 0.0218 | | Dam | 6/20/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 20.4579 | 0.00826171 | 20.4579 | 0.0080 | | am | 6/20/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 350.7065 | 0.14162918 | 350.7065 | 0.1380 | | Dam | 6/20/2001 | 6034 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 1.4613 | 0.00059013 | 1.4613 | 0.0005 | | Dam | 6/20/2001 | 2080 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | Sp. 0 | | | Cell-Motile | Cells/ml | 1.4613 | 0.00059013 | 1.4613 | 0.000 | | Dam | 6/20/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 70.1413 | 0.02832584 | 70.1413 | 0.0276 | |)am | 6/20/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 149.0503 | 0.06019242 | 149.0503 | 0.0586 | | Dam | 6/20/2001 | 1328 | Bacillariophyta | | Fragilariales | Fragilariaceae | Synedra | cyclopum | | | Cell-Nonmotile | Cells/ml | 10.2289 | 0.00413084 | 10.2289 | 0.0040 | |)am | 6/20/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 11.6902 | 0.00472097 | 11.6902 | 0.0046 | |)am | 6/20/2001 | 3065 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Cell-Motile | Cells/ml | 21.9192 | 0.00885184 | 21.9192 | 0.0086 | | Dami | 6/20/2001 | 2082 | Chlorophyta | | | | | | | | Cell-Motile | Cells/ml | 2.9226 | 0.00003104 | 2.9226 | 0.0001 | | Dam
Dam | 6/20/2001 | 3015 | Chilorophyta | Chlorophyceae | Volvocales
Contomonadales | Chlamydomonadaceae
Cryptomonadaceae | Chlamydomonas
Cryptomonas | globosa | | | Cell-Motile | Cells/ml | 4.3838 | 0.00177035 | 4.3838 | 0.0017 | | Dam
Dam | 6/20/2001 | 2462 | Cryptophyta
Chlorophyta | Chlorophyceae | Cryptomonadales
Chlorococcales | | | erosa
lacustris | | | Colonial-Nonmotile | Cells/ml | 2.9226 | 0.00177035 | 2.9226 | 0.001 | | om Dam | | 2641 | Chlorophyta | Chlorophyceae | | Oocystaceae
Palmelloneidaceae | Quadrigula | | | | Colonial-Nonmotile | Cells/ml | 2.9226 | 0.00118026 | 23.3804 | | | | 6/20/2001 | 2590 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | | | 1.4613 | 0.000118026 | 23.3804 | 0.0093 | |)am | | | Chlorophyta | Chlorophyceae | Ulotrichles | Ulotrichaceae | Ulothrix | accepture alia | | | Filament | Cells/ml | | | | | | Dam | 6/20/2001 | 10220 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | - 4 bankaria | Complex-Filament | Cells/ml | 1.4613 | 0.00059013 | 23.3804 | 0.0092 | | Dam | 6/20/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | 0 | | | >1 um spherical | Cell-Nonmotile | Cells/ml | 1718.8658 | 0.69414612 | 1718.8658 | 0.6765 | | Dam | 6/20/2001 | 1446 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 52.0868 | 0.02103471 | 52.0868 | 0.0205 | | Dam | 6/20/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 52.0868 | 0.02103471 | 52.0868 | 0.0205 | | Dam | 7/3/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 30.4766 | 0.02888139 | 30.4766 | 0.0198 | | Dam | 7/3/2001 | 1328 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | cyclopum | | | Cell-Nonmotile | Cells/ml | 8.4073 | 0.00796724 | 8.4073 | 0.0054 | | Dam | 7/3/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 2.1018 | 0.00199179 | 2.1018 | 0.0013 | | Dam | 7/3/2001 | 10220 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | | Complex-Filament | Cells/ml | 1.0509 | 0.00099589 | 42.0367 | 0.0274 | | Dam | 7/3/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 24.1711 | 0.02290593 | 24.1711 | 0.0157 | | Dam | 7/3/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 35.7312 | 0.03386095 | 35.7312 | 0.0233 | |)am | 7/3/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 22.0693 | 0.02091414 | 22.0693 | 0.0143 | | Dam | 7/3/2001 | 1127 | Chrysophyta | Chrysophyceae | Ochromonadales | Dinobryaceae | Dinobryon | divergens | | | Colonial-Motile | Cells/ml | 1.0509 | 0.00099589 | 1.0509 | 0.0006 | | Dam | 7/3/2001 | 4269 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | wesenbergii | | | Colonial-Nonmotile | Cells/ml | 1.0509 | 0.00099589 | 420.3674 | 0.2742 | | Dam | 7/3/2001 | 3065 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Cell-Motile | Cells/ml | 6.3055 | 0.00597546 | 6.3055 | 0.0041 | |)am | 7/3/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 1.0509 | 0.00099589 | 1.0509 | 0.0006 | | am | 7/3/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 1.0509 | 0.00099589 | 2.1018 | 0.0013 | |)am | 7/3/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 2.1018 | 0.00199179 | 2.1018 | 0.0013 | |)am | 7/3/2001 | 8011 | Chlorophyta | Chlorophyceae | Chlorococcales | Actinodiscaceae | Deasonia | Gigantica | | | Cell-Nonmotile | Cells/ml | 1.0509 | 0.00099589 | 1.0509 | 0.0006 | | Dam | 7/3/2001 | 1434 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 7.3564 | 0.00697135 | 18.3911 | 0.011 | | Dam | 7/3/2001 | 1315 | Bacillariophyta | | Fragilariales | Fragilariaceae | Synedra | ulna | | | Cell-Nonmotile | Cells/ml | 3.1528 | 0.00298778 | 3.1528 | 0.002 | | am | 7/3/2001 | 1021 | Bacillariophyta | | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 1.0509 | 0.00099589 | 3.1528 | 0.002 | |)am | 7/3/2001 | 2369 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | lacustris | | | Colonial-Nonmotile | Cells/ml | 1.0509 | 0.00099589 | 4.2037 | 0.002 | |)am | 7/3/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 339.3571 | 0.32159441 | 339.3571 | 0.221 | | am | 7/3/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 367.6368 | 0.34839389 | 367.6368 | 0.239 | |)am | 7/3/2001 | 1731 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 197.9583 | 0.18759673 | 197.9583 | 0.129 | | Dam | 7/12/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 18.9165 | 0.02300526 | 18.9165 | 0.01 | | am | 7/12/2001 | 6034 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 0.4204 | 0.00051127 | 0.4204 | 0.000 | |)am | 7/12/2001 | 3065 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Cell-Motile | Cells/ml | 9.0079 | 0.01095494 | 9.0079 | 0.006 | | Dam | 7/12/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 9.0079 | 0.01095494 | 9.0079 | 0.006 | | Dam | 7/12/2001 | 2462 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Quadrigula | lacustris | | | Colonial-Nonmotile | Cells/ml | 0.2102 | 0.00025563 | 0.8407 | 0.000 | | Dam | 7/12/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 5.0444 | 0.00613474 | 96.6549 | 0.074 | | Dam | 7/12/2001 | 1434 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 10.5092 | 0.01278074 | 134.7803 | 0.103 | | Dam | 7/12/2001 | 9397 | Bacillariophyta | | Fragilariales | Fragilariaceae | Fragilaria | capucina | vaucheriae | | Lateral-Filament | Cells/ml | 0.4204 | 0.00051127 | 0.8407 | 0.000 | |)am | 7/12/2001 | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | Copacina | Tagorienae | | Colonial-Nonmotile | Cells/ml | 2.7324 | 0.003323 | 91.0795 | 0.069 | | Dam Dam | 7/12/2001 | 10220 | | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | | Complex-Filament | Cells/ml | 2.9426 | 0.00357864 | 59.1784 | 0.0453 | | Dami Dam | 7/12/2001 | 2491 | Cyanophyta | | | | Schroederia | | | | Cell-Nonmotile | Cells/ml | 50.9036 | 0.0619063 | 50.9036 | 0.039 | | zaill
Zam | | 2491 | Chlorophyta |
Chlorophyceae | Chlorococcales | Chlorococcaceae | | judayi | | | | | 0.8407 | 0.00102242 | 0.8407 | 0.000 | | Dam | 7/12/2001 | | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | | | | 0.000 | | Dam | 7/12/2001 | 8332 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Tetraedron | muticum | | | Cell-Nonmotile | Cells/ml | 1.0509 | 0.00127805 | 1.0509 | | | Dam | 7/12/2001 | 9818 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | medius | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00051127 | 0.4204 | 0.000 | | Dam | 7/12/2001 | 1328 | Bacillariophyta | | Fragilariales | Fragilariaceae | Synedra | cyclopum | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00051127 | 0.4204 | 0.000 | | Dam | 7/12/2001 | | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | viridula | germainii | | Cell-Motile | Cells/ml | 0.2102 | 0.00025563 | 0.2102 | 0.000 | | Dam | 7/12/2001 | 4011 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | circinalis | | | Complex-Filament | Cells/ml | 1.4713 | 0.00178932 | 59.1457 | 0.0453 | |)am | 7/12/2001 | 2369 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | lacustris | | | Colonial-Nonmotile | Cells/ml | 0.2102 | 0.00025563 | 0.2102 | 0.000 | | 20111 | 7/12/2001 | 1152 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 2.1018 | 0.0025561 | 9.9837 | 0.0076 | | | ed. | | | | | | | | | | | Customer | | | | Relative a | |------|-----------|----------------|-----------------|-------------------------------|------------------|----------------------|----------------------------|--------------------------|--|---------------------|--------------------|-----------|-------------------|---------------|---------------|--------------| | | Sample | Taxa | | | | | | | | | | requested | | Relative | Algal cell | cell | | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | concentration | n concentral | | Dam | 7/12/2001 | 1271 | Bacillariophyta | Bacillariophyceae | Cymbellales | Rhoicospheniaceae | Rhoicosphenia | curvata | | | Cell-Nonmotile | Cells/ml | 0.2102 | 0.00025563 | 0.2102 | 0.00016 | | Dam | 7/12/2001 | 1021 | Bacillariophyta | | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 0.4204 | 0.00051127 | 0.6306 | 0.00048 | | Dam | 7/12/2001 | 9045 | Bacillariophyta | | Fragilariales | Fragilariaceae | Fragilaria | construens | | | Lateral-Filament | Cells/ml | 0.4204 | 0.00051127 | 3.9234 | 0.003008 | | Dam | 7/12/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 330.8731 | 0.40239058 | 330.8731 | 0.253745 | | Dam | 7/12/2001 | 2861 | Chlorophyta | Prasinophyceae | Prasinocladales | Pedinomonadaceae | Monomastix | astigmata | | | Cell-Motile | Cells/ml | 76.3553 | 0.09285933 | 76.3553 | 0.058556 | | Dam | 7/12/2001 | 7140 | Miscellaneous | | | | | 0003 | | Microflagellate | Cell-Motile | Cells/ml | 16.9679 | 0.02063547 | 16.9679 | 0.013012 | | Dam | 7/12/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 76.3553 | 0.09285933 | 76.3553 | 0.058556 | | Dam | 7/12/2001 | 4321 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Synechococcus | elongatus | | E o o an opnono | Cell-Nonmotile | Cells/ml | 178.1625 | 0.21667193 | 178.1625 | 0.13663 | | Dam | 7/12/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Ojnochococcus | eiorigatus | | >1 um spherical | Cell-Nonmotile | Cells/ml | 16.9679 | 0.02063547 | 16.9679 | 0.013012 | | Dam | 7/12/2001 | 4264 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | aeruginosa | | > i dili spilotical | Colonial-Nonmotile | Cells/ml | 0.3073 | 0.02003347 | 50.9036 | 0.039037 | | Dam | 7/12/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 8.4839 | 0.01031768 | 8.4839 | 0.006506 | | Dam | 7/19/2001 | 3065 | | | | | | - | | | Cell-Motile | Cells/ml | 11.7703 | 0.02060999 | 11.7703 | 0.007405 | | Dam | | 4041 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Multi-Filament | Cells/ml | 42.4571 | 0.07434308 | 746.2134 | 0.469492 | | | 7/19/2001 | | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | | | | | | | | Dam | 7/19/2001 | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | | | | Colonial-Nonmotile | Cells/ml | 3.3629 | 0.00588849 | 146.7082 | 0.092303 | | Dam | 7/19/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 10.0888 | 0.01766565 | 10.0888 | 0.006347 | | Dam | 7/19/2001 | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 0.8407 | 0.00147208 | 6.7259 | 0.004231 | | Dam | 7/19/2001 | 1293 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | niagarae | | | Cell-Nonmotile | Cells/ml | 1.2611 | 0.00220821 | 1.2611 | 0.000793 | | Dam | 7/19/2001 | 1434 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 1.2611 | 0.00220821 | 5.4647 | 0.003438 | | Dam | 7/19/2001 | 1315 | Bacillariophyta | | Fragilariales | Fragilariaceae | Synedra | ulna | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00073613 | 0.4204 | 0.00026 | | Dam | 7/19/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 1.2611 | 0.00220821 | 1.2611 | 0.000793 | | Dam | 7/19/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 0.8407 | 0.00147208 | 0.8407 | 0.00052 | | Dam | 7/19/2001 | 4172 | Cyanophyta | Cyanophyceae | Oscillatoriales | Oscillatoriaceae | Oscillatoria | limnetica | | | Filament | Cells/ml | 0.4204 | 0.00073613 | 5.3501 | 0.00336 | | Dam | 7/19/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 1.6815 | 0.00294433 | 1.6815 | 0.001057 | | Dam | 7/19/2001 | 8011 | Chlorophyta | Chlorophyceae | Chlorococcales | Actinodiscaceae | Deasonia | Gigantica | | | Cell-Nonmotile | Cells/ml | 0.8407 | 0.00147208 | 0.8407 | 0.000528 | | Dam | 7/19/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 0.4204 | 0.00073613 | 0.4204 | 0.00026 | | Dam | 7/19/2001 | 6021 | Pyrrhophyta | Dinophyceae | Peridinales | Glenodiniaceae | Glenodinium | quadridens | | | Cell-Motile | Cells/ml | 0.4204 | 0.00073613 | 0.4204 | 0.00026 | | Dam | 7/19/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00073613 | 0.4204 | 0.00026 | | Dam | 7/19/2001 | 1152 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 1.2611 | 0.00220821 | 26.0628 | 0.016397 | | Dam | 7/19/2001 | 4261 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | aeruginosa | | | Colonial-Nonmotile | Cells/ml | 0 | 0 | 131.386 | 0.082663 | | Dam | 7/19/2001 | 7140 | Miscellaneous | Суапорпусвае | Cilioococcaios | Cilioococcaceae | IVIICIOCYSUS | aeraginosa | | Microflagellate | Cell-Motile | Cells/ml | 101.8071 | 0.17826589 | 101.8071 | 0.06405 | | | 7/19/2001 | 3043 | | Comtonhussos | Comtomonadalos | Cantomonodocooo | Rhodomonas | minuta | nannanlanetica | iviicioliageliate | | Cells/ml | 186.6464 | 0.3268209 | 186.6464 | 0.11743 | | Dam | | | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | RHOUGHIGHAS | minuta | nannoplanctica | 2.00 una anharia al | Cell-Motile | | 84.8393 | 0.3266209 | 84.8393 | 0.05337 | | Dam | 7/19/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Charles | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | | | | | | Dam | 7/19/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 16.9679 | 0.02971107 | 16.9679 | 0.010675 | | Dam | 7/19/2001 | 1298 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.11884393 | 67.8714 | 0.04270 | | Dam | 7/19/2001 | 1731 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 33.9357 | 0.05942196 | 33.9357 | 0.02135 | | Dam | 7/25/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 654.5721 | 0.57933922 | 23306.7606 | 0.954904 | | Dam | 7/25/2001 | 3065 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Cell-Motile | Cells/ml | 10.0087 | 0.00885836 | 10.0087 | 0.000410 | | Dam | 7/25/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 38.0332 | 0.03366188 | 38.0332 | 0.00155 | | Dam | 7/25/2001 | 1434 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 2.0017 | 0.00177164 | 9.0079 | 0.000369 | | Dam | 7/25/2001 | 4261 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae |
Microcystis | aeruginosa | | | Colonial-Nonmotile | Cells/ml | 0 | 0 | 397.3138 | 0.01627 | | Dam | 7/25/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 2.0017 | 0.00177164 | 2.0017 | 0.000082 | | Dam | 7/25/2001 | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 2.0017 | 0.00177164 | 16.014 | 0.000656 | | Dam | 7/25/2001 | 6033 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 2 | | | Cell-Motile | Cells/ml | 2.0017 | 0.00177164 | 2.0017 | 0.000082 | | Dam | 7/25/2001 | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | | | | Colonial-Nonmotile | Cells/ml | 2.0017 | 0.00177164 | 120.105 | 0.004920 | | Dam | 7/25/2001 | 1296 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 4.0035 | 0.00354336 | 4.0035 | 0.00016 | | Dam | 7/25/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 4.0035 | 0.00354336 | 4.0035 | 0.000164 | | Dam | 7/25/2001 | 1152 | Bacillariophyta | | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 2.0017 | 0.00177164 | 40.035 | 0.00164 | | Dam | 7/25/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 152.7107 | 0.13515898 | 152.7107 | 0.00625 | | Dam | 7/25/2001 | 1298 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.06007064 | 67.8714 | 0.00278 | | Dam | 7/25/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 16.9679 | 0.0150177 | 16.9679 | 0.000695 | | Dam | 7/25/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | 2.00,000 | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 33.9357 | 0.03003532 | 33.9357 | 0.00139 | | Dam | 7/25/2001 | 1000049 | Chlorophyta | Chlorophyceae | Bryopsidales | Dichotomosiphonaceae | Dichotomococcus | curvatus | | | Colonial-Nonmotile | Cells/ml | 16.9679 | 0.0150177 | 67.8714 | 0.00278 | | Dam | 7/25/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chrococcaceae | | van ratura | | >1 um spherical | Cell-Nonmotile | Cells/ml | 118.775 | 0.10512366 | 118.775 | 0.00276 | | Dam | 8/2/2001 | 4261 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | aeruginosa | | - r um apriorital | Colonial-Nonmotile | Cells/ml | 0 | 0.10312300 | 250.3217 | 0.00149 | | Dam | 8/2/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | aeruginosa
flos-aquae | | | Multi-Filament | Cells/ml | 4483.9192 | 0.69247014 | 164039.698 | 0.98191 | | | | 3015 | | | | | | erosa | | | Cell-Motile | Cells/ml | 56.049 | 0.00865588 | 56.049 | 0.00033 | | Dam | 8/2/2001 | | Cryptophyta | Chlorophyceae | Cryptomonadales | Chlomodomonadaceae | Chlomodomonas | | | | | | | | | | | Dam | 8/2/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 28.0245
18.683 | 0.00432794 | 28.0245 | 0.00016 | | Dam | 8/2/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | | | 0.00288529 | 112.098 | 0.0006 | | Dam | 8/2/2001 | 6011 | Pyrrhophyta | Dinophyceae | Gonyaulacales | Certiaceae | Ceratium | hirundinella | | | Cell-Motile | Cells/ml | 9.3415 | 0.00144265 | 9.3415 | 0.00005 | | Dam | 8/2/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 28.0245 | 0.00432794 | 28.0245 | 0.00016 | | Dam | 8/2/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 9.3415 | 0.00144265 | 9.3415 | 0.00005 | | Dam | 8/2/2001 | 4368 | Cyanophyta | Cyanophyceae | Oscillatoriales | Oscillatoriaceae | Oscillatoria | amphibia | | | Filament | Cells/ml | 9.3415 | 0.00144265 | 424.6131 | 0.00254 | | Dam | 8/2/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 1085.9426 | 0.1677066 | 1085.9426 | 0.00650 | | Dam | 8/2/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 407.2285 | 0.06288998 | 407.2285 | 0.0024 | | Dam | 8/2/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 135.7428 | 0.02096332 | 135.7428 | 0.00081 | | Dam | 8/2/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.01048166 | 67.8714 | 0.00040 | | Dam | 8/2/2001 | 8308 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | serratus | | | Colonial-Nonmotile | Cells/ml | 67.8714 | 0.01048166 | 271.4856 | 0.00162 | | Dam | 8/2/2001 | 2884 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | quadricauda | | | Colonial-Nonmotile | Cells/ml | 67.8714 | 0.01048166 | 135.7428 | 0.00081 | | Dam | 8/8/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 84.0735 | 0.14805632 | 2338.773 | 0.77853 | | Dam | 8/8/2001 | 3015 | Cryptophyta | | Cryptomonadales | Cryptomonadaceae | | erosa | | | Cell-Motile | Cells/ml | 12.1907 | 0.02146824 | 12.1907 | 0.00405 | | Dam | 8/8/2001 | 4261 | Cyanophyta | Cryptophyceae | Chroococcales | Chroococcaceae | Cryptomonas
Microcystis | | | | Colonial-Nonmotile | Cells/ml | 0 | 0.02140024 | 160.3522 | 0.05337 | | Lani | 8/8/2001 | 1180 | Chrysophyta | Cyanophyceae
Chrysophyceae | Ochromonadales | Synuraceae | Mallomonas | aeruginosa | | | Cell-Motile | Cells/ml | 0.8407 | 0.0014805 | 0.8407 | 0.000279 | | Dam | | | | | | | | | | | | | | | | | | Table B-5. Contin | ued. | | | | | | | | | | | | | | | | |------------------------------------|-----------|----------------|------------------------------------|--|-------------------------------------|---------------------------------------|--------------------------------|---------------------------|----------------|--------------------|--------------------------------------|-----------------------|------------------------|--------------------------|------------------------|-------------------------| | | Sample | Taxa | | | | | | | | | | Customer
requested | | Relative | Algal cell | Relative algal cell | | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | | | | County Boundary | | 1432 | | Coscinodiscophyceae | | Aulacoseriaceae | Aulacoseira | granulata | | | Filament | Cells/ml | 19.3369 | 0.00208319 | | 0.01336432 | | County Boundary | | 2021 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Actinastrum | hantzschii | | | Cell-Nonmotile | Cells/ml | 4.2037 | 0.00045287 | 23.5406 | 0.00228792 | | County Boundary | | 2363
1434 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 0.8407
6.7259 | 0.00009057 | 3.3629 | 0.00032684 | | County Boundary | | 2381 | | Chlorophyceae | Aulacoseirales
Chlorococcales | Aulacoseríaceae | Aulacoseira
Pediastrum | italica | | | Filament
Colonial-Nonmotile | Cells/ml
Cells/ml | 4.2037 | 0.00072459 | 24.6618
91.6401 | 0.00239689 | | County Boundary
County Boundary | | 9045 | Chlorophyta
Bacillariophyta | Chlorophyceae
Fragilariophyceae | Fragilariales | Hydrodictyaceae
Fragilariaceae | Fragilaria | construens | | | Lateral-Filament | Cells/ml | 0.8407 | 0.000043287 | 11.2098 | 0.00108948 | | County Boundary | | 2504 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Selenastrum | gracile | | | Cell-Nonmotile | Cells/ml | 0.8407 | 0.00009057 | 3.3629 | 0.00032684 | | County Boundary | | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 1.6815 | 0.00018115 | 8.4073 | 0.00081711 | | County Boundary | | 1076 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Cyclotella | meneghiniana | | | Cell-Nonmotile | Cells/ml | 0.8407 | 0.00009057 | 0.8407 | 0.00008171 | | County Boundary | | 1180 | Chrysophyta | Chrysophyceae | Ochromonadales | Synuraceae | Mallomonas | | | | Cell-Motile | Cells/ml | 0.8407 | 0.00009057 | 0.8407 | 0.00008171 | | County Boundary | | | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | ulna | ulna | | Cell-Nonmotile | Cells/ml | 0.8407 | 0.00009057 | 0.8407 | 0.00008171 | | County Boundary | | 1296 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 0.8407 | 0.00009057 | 0.8407 | 0.00008171 | | County Boundary | 7/25/2001 | 2462 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Quadrigula | lacustris | | | Colonial-Nonmotile | Cells/ml | 0.8407 | 0.00009057 | 3.3629 | 0.00032684 | | County Boundary | | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 1968.2709 | 0.21204491 | 1968.2709 | 0.19129696 | | County Boundary | | 1298 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | 2.0.0 um enharical | Cell-Nonmotile |
Cells/ml
Cells/ml | 3766.8633
1323.4925 | 0.40581008
0.14258192 | 3766.8633
1323.4925 | 0.3661028
0.12863071 | | County Boundary
County Boundary | | 2683
9123 | Chlorophyta
Bacillariophyta | Chlorophyceae
Bacillariophyceae | Chlorococcales
Bacillarales | Chlorococcaceae
Bacillariaceae | Nitzschia | palea | | 2-9.9 um spherical | Cell-Nonmotile
Cell-Motile | Cells/ml | 271.4856 | 0.02924757 | 271.4856 | 0.02638578 | | County Boundary | | 1222 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | gracilis | | | Cell-Motile | Cells/ml | 33.9357 | 0.00365595 | 33.9357 | 0.00329822 | | County Boundary | | 1013 | Bacillariophyta | Bacillariophyceae | Achnanthales | Achnanthaceae | Achnanthes | minutissima | | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.00365595 | 33.9357 | 0.00329822 | | County Boundary | | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 678.7141 | 0.07311893 | 678.7141 | 0.06596447 | | County Boundary | 7/25/2001 | 8041 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Monoraphidium | capricomutum | | | Cell-Nonmotile | Cells/ml | 101.8071 | 0.01096784 | 101.8071 | 0.00989467 | | County Boundary | | 1221 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | acicularis | | | Cell-Motile | Cells/ml | 67.8714 | 0.00731189 | 67.8714 | 0.00659645 | | County Boundary | | 8226 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | intermedius | | | Colonial-Nonmotile | Cells/ml | 33.9357 | 0.00365595 | 135.7428 | 0.01319289 | | County Boundary | | 8302 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | quadricauda | longispina | | Colonial-Nonmotile | Cells/ml | 67.8714 | 0.00731189 | 271.4856 | 0.02638578 | | County Boundary | | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile
Cell-Nonmotile | Cells/ml | 135.7428
237.5499 | 0.01462378 0.02559162 | 135.7428
237.5499 | 0.01319289 | | County Boundary
County Boundary | 7/25/2001 | 2491
2031 | Chlorophyta
Chlorophyta | Chlorophyceae
Chlorophyceae | Chlorococcales
Chlorococcales | Chlorococcaceae
Oocystaceae | Schroederia
Ankistrodesmus | judayi
falcatus | | | Cell-Nonmotile | Cells/ml
Cells/ml | 33.9357 | 0.02359162 | 33.9357 | 0.02308756 | | County Boundary | | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 101.8071 | 0.01096784 | 101.8071 | 0.00329822 | | County Boundary | 7/25/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 135.7428 | 0.01462378 | 135.7428 | 0.01319289 | | County Boundary | | 2554 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Tetraedron | minimum | | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.00365595 | 33.9357 | 0.00329822 | | County Boundary | | 4321 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Synechococcus | elongatus | | | Cell-Nonmotile | Cells/ml | 101.8071 | 0.01096784 | 101.8071 | 0.00989467 | | County Boundary | 7/25/2001 | 1731 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 67.8714 | 0.00731189 | 67.8714 | 0.00659645 | | County Boundary | | 8030 | Chlorophyta | Chlorophyceae | Microsporales | Microsporaceae | Microspora | | | | Filament | Cells/ml | 37.366 | 0.01294401 | 210.1837 | 0.04252189 | | County Boundary | | 9045 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | construens | | | Lateral-Filament | Cells/ml | 5.6049 | 0.0019416 | 156.9372 | 0.03174969 | | County Boundary | | 1271
9397 | Bacillariophyta
Bacillariophyta | Bacillariophyceae | Cymbellales | Rhoicospheniaceae | Rhoicosphenia | curvata | ununharina | | Cell-Nonmotile
Lateral-Filament | Cells/ml
Cells/ml | 1.8683
1.8683 | 0.0006472
0.0006472 | 1.8683 | 0.00037797 | | County Boundary County Boundary | | 1341 | Bacillariophyta
Bacillariophyta | Fragilariophyceae
Bacillariophyceae | Fragilariales
Thalassiophysales | Fragilariaceae
Catenulaceae | Fragilaria
Amphora | capucina | vaucheriae | | Cell-Nonmotile | Cells/ml | 11.2098 | 0.0038832 | 11.2098 | 0.00226783 | | County Boundary | | 9506 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | ulna | ulna | | Cell-Nonmotile | Cells/ml | 28.0245 | 0.00970801 | 38.5337 | 0.00779569 | | County Boundary | | 9321 | Bacillariophyta | Bacillariophyceae | Cymbellales | Gomphonemataceae | Gomphoneis | herculeana | dina | | Cell-Nonmotile | Cells/ml | 5.6049 | 0.0019416 | 5.6049 | 0.00113392 | | County Boundary | | 1066 | Bacillariophyta | Bacillariophyceae | Achnanthales | Cocconiedaceae | Cocconeis | pediculus | | | Cell-Nonmotile | Cells/ml | 5.6049 | 0.0019416 | 5.6049 | 0.00113392 | | County Boundary | 8/2/2001 | 1108 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Diatoma | vulgaris | vulgaris | | Cell-Nonmotile | Cells/ml | 14.9464 | 0.00517761 | 14.9464 | 0.00302378 | | County Boundary | 8/2/2001 | 1021 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 5.6049 | 0.0019416 | 5.6049 | 0.00113392 | | County Boundary | | 9118 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | linearis | | | Cell-Motile | Cells/ml | 5.6049 | 0.0019416 | 5.6049 | 0.00113392 | | County Boundary | | 9439 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | sigma | | | Cell-Motile | Cells/ml | 1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary | | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | Enceto | | Multi-Filament | Cells/ml | 1.8683 | 0.0006472 | 45.2921 | 0.00916297 | | County Boundary
County Boundary | | 9212
2884 | Bacillariophyta
Chlorophyta | Bacillariophyceae
Chlorophyceae | Achnanthales
Chlorococcales | Cocconiedaceae
Scenedesmaceae | Cocconeis
Scenedesmus | placentula
quadricauda | lineata | | Cell-Nonmotile
Colonial-Nonmotile | Cells/ml
Cells/ml | 9.3415
1.8683 | 0.003236 | 9.3415
7.4732 | 0.00188986 | | County Boundary | | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 5.6049 | 0.0006472 | 5.6049 | 0.00151189 | | County Boundary | 8/2/2001 | 4421 | Cyanophyta | Cyanophyceae | Oscillatoriales | Oscillatoriaceae | Lyngbya | subtilis | | | Filament | Cells/ml | 11.2098 | 0.0038832 | 1222.8869 | 0.2474001 | | County Boundary | 8/2/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary | | 2590 | Chlorophyta | Chlorophyceae | Ulotrichles | Ulotrichaceae | Ulothrix | | | | Filament | Cells/ml | 1.8683 | 0.0006472 | 161.9194 | 0.03275763 | | County Boundary | 8/2/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary | 8/2/2001 | 2176 | Chlorophyta | Chlorophyceae | Chlorococcales | Coelastraceae | Coelastrum | astroideum | | | Cell-Nonmotile | Cells/ml | 1.8683 | 0.0006472 | 14.9464 | 0.00302378 | | County Boundary | 8/2/2001 | | Bacillariophyta | Bacillariophyceae | Cymbellales | Cymbellaceae | Cymbella | affinis | | | Cell-Nonmotile | Cells/ml | 1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary | 8/2/2001 | 1161 | Bacillariophyta | Bacillariophyceae | Cymbellales | Gomphonemataceae | Gomphonema | parvulum | | | Cell-Nonmotile | Cells/ml | 1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary | 8/2/2001 | | Bacillariophyta
Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae
Stophonodiscocco | Nitzschia | constricta | | | Cell-Motile | Cells/ml | 1.8683
1.8683 | 0.0006472 | 1.8683 | 0.00037797 | | County Boundary
County Boundary | 8/2/2001 | 1293
4170 | Bacillariophyta
Cyanophyta | Coscinodiscophyceae
Cyanophyceae | Thalassiosirales
Oscillatoriales | Stephanodiscaceae
Oscillatoriaceae | Stephanodiscus
Oscillatoria | niagarae | | | Cell-Nonmotile
Filament | Cells/ml
Cells/ml | 1.8683 | 0.0006472 | 261.562 | 0.00037797 | | County Boundary County Boundary | 8/2/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 1153.814 | 0.39969447 | 1153.814 | 0.03291615 | | County Boundary | 8/2/2001 | | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | pupula | | | Cell-Motile | Cells/ml | 67.8714 | 0.02351144 | 67.8714 | 0.01373094 | | County Boundary | 8/2/2001 | 9102 | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | tripunctata | | | Cell-Motile | Cells/ml | 67.8714 | 0.02351144 | 67.8714 | 0.01373094 | | County Boundary | 8/2/2001 | 9123 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | | | Cell-Motile | Cells/ml | 339.3571 | 0.11755721 | 339.3571 | 0.06865474 | | County Boundary | 8/2/2001 | 1013 | Bacillariophyta | Bacillariophyceae | Achnanthales | Achnanthaceae | Achnanthes | minutissima | | | Cell-Nonmotile | Cells/ml | 271.4856 | 0.09404574 | 271.4856 | 0.05492377 | | County Boundary | 8/2/2001 | 1214 | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | cryptocephala | | | Cell-Motile | Cells/ml | 67.8714 | 0.02351144 | 67.8714 | 0.01373094 | | County Boundary | 8/2/2001 | 9482 | Bacillariophyta |
Bacillariophyceae | Naviculales | Naviculaceae | Navicula | salinarum | | | Cell-Motile | Cells/ml | 67.8714 | 0.02351144 | 67.8714 | 0.01373094 | | County Boundary | 8/2/2001 | 1222 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | gracilis | | | Cell-Motile | Cells/ml | 67.8714 | 0.02351144 | 67.8714 | 0.01373094 | | County Boundary | 8/2/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | 200 | Cell-Motile | Cells/ml | 135.7428 | 0.04702287 | 135.7428 | 0.02746189 | | County Boundary | | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Cotonylososo | Amehoro | no dio ulue | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 407.2285
67.8714 | 0.14106864 | 407.2285
67.8714 | 0.08238568 | | County Boundary | 8/2/2001 | 1343 | Bacillariophyta | Bacillariophyceae | Thalassiophysales | Catenulaceae | Amphora | pediculus | | | Cell-Nonmotile | Cells/ml | 07.8714 | 0.02351144 | 07.6714 | 0.015/3094 | | Site data unity Boundary (2020) Bounda | ate ic | 3069
3069
1314
8302
1315
1021
1109
2462
4041
6033
1221
1231
1434
1152
9504
1172
9506
4172
9506
4172
1198
2085
1298
1298
1298
1298
1298
1298
1298
1298
1298
1296
1296
1296
1296
1296
1296
1296
1297
1297
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298
1298 | Division Bacillariophyta Crystophyta Bacillariophyta Chlorophyta Bacillariophyta Chytophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Bacillariophyta Chlorophyta Chlorophyta Chlorophyta | Class Coscinodiscophyceae Cryptophyceae Cryptophyceae Fragilanophyceae Chlorophyceae Fragilanophyceae Fragilanophyceae Fragilanophyceae Fragilanophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Fragilanophyceae Coscinodiscophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlysophyceae Chlysophyceae Chlysophyceae Chlysophyceae Chlysophyceae Chlysophyceae Chlorophyceae | Order Thalassiosirales Cryptomonadies Fragilariales Chlorococcales Fragilariales Chlorococcales Fragilariales Chlorococcales Nostocales Gymnodinales Baciliarales Fragilariales Baciliarales Fragilariales Baciliarales Fragilariales Baciliarales Fragilariales Gymnodinales Baciliarales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Chytomonadales Daciliarales Thalassiosirales Baciliarales Chyptomonadales Volvocales Fragilariales Ochromonadales Chromonadales Chlorococcales Chlorococcales | Family Stephanodiscoceae Cryptomonadiscoe Fragilariaceae Scenedesmaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Ocystaceae Ocystaceae Bacillariaceae Bacillariaceae Bacillariaceae Fragilariaceae Fragilariaceae Cryptomonadiaceae Cryptomonadiaceae Stephanodiscaceae Chlamydomonadiaceae Stephanodiscaceae Chlamydomonadiaceae Cryptomonadiaceae Chlamydomonadiaceae Cryptomonadiaceae Cryptomonadiaceae Cocystaceae | Genus Stephanodiscus Cryptomonas Synedra Scenedesmus Synedra Astenonella Datoma Quadrioula Aphanizomenon Qymnodinium Nitzschia Synedra Nitzschia Aulacoseira Fragilaria Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Achnanthes Chlamydomonas Achnanthes Chlamydomonas Achnanthes Chlamydomonas Achnanthes Cryptomonas Chlamydomonas Chlamydomonas Fragilaria Cryptomonas Chlamydomonas Fragilaria Cryptomonas Chlamydomonas Fragilaria Cryptomonas Chlamydomonas Fragilaria Cryptomonas Chlamydomonas Fragilaria Erkenia | Species medius rostratiformis delicatissima quadricauda ulna formosa tenuis lacustris flos-aquae sp. 2 acicularis tenera palea italica crotonensis ulna limnetica minuta parvus globosa lanceolata hantzschi pumila erosa palea capucina | Variety longispina ulna nannoplanctica | Morph | Colonality Cell-Normotile Cell-Motile Cell-Motile Colonal-Normotile Colonal-Normotile Colonal-Normotile Colonal-Normotile Colonal-Normotile Cell-Motile Colonal-Normotile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Filament Cell-Motile Filament Cell-Motile | requested units Cells/ml | Concentration 8.7677 26.303 8.7677 26.303 8.7677 8.7677 17.5359 8.7677 8.7677 108.3614 1.8683 31.7611 22.4196 74.732 57.9173 9.6674 9.37366 1.8683 3.37611 22.4196 74.732 57.9173 74.732 67.9173 75.6049 3.7366 1.8683 3.7617 14.75.9999 1.8683 14140 155 16.6049 1.8683 14140 156 16.7617 16. | Relative Concentration of | Algal cell concentration 18 7677 26 303 8 7677 26 303 9 7677 17 5553 140 2826 8 7677 17 5553 140 2826 8 7677 17 5353 31 7611 22 4196 74 732 193 0557 16 8147 3 7366 10 19073 4140 156 3597 1847 22104 0137 67 87 144 75 0599 1 8683 |
0.00044
0.00132
0.00044
0.001769
0.00088
0.00076
0.00088
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0. | |--|--
--|---|---|--|--|--|---|---|--------------------|--
---|--|--|--|---| | unity Boundary unity Boundary frozunity Boun | //2001 (22001 (22001)
(22001) (22001 | 9818 3069 1314 3069 1314 3069 1315 3069 1316 3 | Beciliariophyte Crystophyte Baciliariophyte Crystophyte Baciliariophyte Chystophyte Baciliariophyte Baciliariophyte Baciliariophyte Chystophyte Baciliariophyte Chystophyte Chiorophyte Baciliariophyte Chiorophyte Chiorophyte | Coscinodiscophyceae Cryptophyceae Cryptophyceae Fragilanophyceae Chlorophyceae Fragilanophyceae Fragilanophyceae Fragilanophyceae Chlorophyceae Chlorophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Fragilariophyceae Coscinodiscophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Coscinodiscophyceae Bacillariophyceae Chlorophyceae Bacillariophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae | Thalassiosirales Cyptomonadales Fragilanales Chiorococcales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Gymnodinales Baciliarales Baciliarales Baciliarales Fragilanales Fragilanales Fragilanales Gymnodinales Baciliarales Fragilanales Fragilanales Fragilanales Tragilanales Fragilanales Chyptomonadales Achmarthales Baciliarales Chyptomonadales Chyptomonadales Chorococcales Chorococcales Chiorococcales Chiorococcales Chiorococcales Chiorococcales | Stephanodiscaceae Cryptomonadaceae Fragilariaceae Scenedesmaceae Fragilariaceae Fragilariaceae Fragilariaceae Oocystaceae Nostocaceae Gymnodiriaceae Bacillariaceae Bacillariaceae Fragilariaceae Bacillariaceae Fragilariaceae Bacillariaceae Fragilariaceae Cymnodiriaceae Cryptomonadaceae Cryptomonadaceae Achinarihaceae Stephanodiscaceae Chlamydomonadaceae Charmydomonadaceae Cryptomonadaceae Charmydomonadaceae Cryptomonadaceae Charmydomonadaceae Cryptomonadaceae Charmydomonadaceae Cryptomonadaceae Cryptomonadaceae Cryptomonadaceae Cryptomonadaceae Cryptomonadaceae Cryptomonadaceae Cryptomonadaceae | Stephanodiscus Cryptomonas Synedra Scenedesmus Synedra Scenedesmus Synedra Astenonella Diadoma Synedra Nitzschia Aulacoseira Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthas Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Chlamydomonas Fragilaria Cryptomonas | medius rostratformis delicatissima quadricauda delicatissima quadricauda ulna formosa tenuis lacustris flos-aquae sp. 2 acicularis tenera balea tataica crotonensis ulna limebica minuta parvus globosa lanceolata hantschii pumila errosa playstigma | longispina | Molph | Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Colonial-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Normotile Filament Cell-Normotile | Cells/ml | 8.7677
26.303
8.7617
8.7617
17.5353
8.7677
8.7677
8.7677
103.3614
1.8683
31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4.440.155
6.8636
1.8683
4.440.156
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.7871
6.78714 | 0.0046867
0.00140002
0.0046867
0.0046867
0.0046867
0.0046867
0.0046867
0.0046867
0.0046867
0.004687
0.004687
0.0046854
0.0017425
0.005283
0.005283
0.005293
0.0046854
0.0017425
0.005283
0.005293
0.005293
0.0046854
0.0014521
0.005295
0.0046854
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295
0.005295 | 8.7677
26.303
8.7677
35.0707
17.5353
140.2826
8.7677
17.5353
140.2826
8.7677
17.5353
140.2826
19.883
3.1.7611
22.4196
74.732
193.0557
16.8147
3.7366
101.9073
4440.156
5597.1847
2.104.0137
67.8714
475.0999 |
0.00044
0.00132
0.00044
0.001769
0.00088
0.00076
0.00088
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0.00076
0. | | unity Boundary province of the control cont | //2001 // | 3069 1314 1314 1314 1314 1314 1316 1021 1109 2462 4041 1109 2462 4041 1152 19504 1172 131 1434 1152 198 2082 1018 1298 2082 1018 1296 3015 2085 3017 1731 8041 2031 1434 2363 2211 | Cryptophyta Bacillanophyta Chyptophyta Bacillanophyta Chyptophyta Bacillanophyta Chyptophyta Bacillanophyta Chilorophyta Chilorophyta Chilorophyta Bacillanophyta | Cryptophyceae Fragilantophyceae Fragilantophyceae Fragilantophyceae Fragilantophyceae Fragilantophyceae Fragilantophyceae Cyanophyceae Cyanophyceae Cyanophyceae Bacillantophyceae Bacillantophyceae Fragilantophyceae Fragilantophyceae Coscinodiscophyceae Fragilantophyceae Cyanophyceae Cyanophyceae Cyanophyceae Bacillantophyceae Coscinodiscophyceae Bacillantophyceae Chorophyceae Coscinodiscophyceae Coscinodiscophyceae Chorophyceae Chirophyceae Coscinodiscophyceae | Cryptomonadales Fragilanales Chiorococcales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Rostocales Obstocales Serimonales Baciliarates Baciliarates Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Cryptomonadales Thalassiosirales Baciliarates Acharochaes Acharothales Thalassiosirales Baciliarates Cryptomonadales Thalassiosirales Fragilanales Ovocales Acharothales Cryptomonadales Chiorococcales Chiorococcales Chiorococcales Chiorococcales | Cryptomonadaceae Fragilariaceae Scenedesmaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Nostocaceae Gymnodiniaceae Bacillariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Coptomonadaceae Coptomonadaceae Coptomonadaceae Chamydomonadaceae Chamydomonadaceae Cragilariaceae | Cryptomonas Synedra Scenedesmus Synedra Astenonella Dalatoma Cuadrigula Aphanizomenon Gymnodinium Nitzschia Synedra Nitzschia Aulacoseira Fragilaria Synedra Oscillatoria Stephanodiscus Chiamydomonas Stephanodiscus Chiamydomonas Chiamydomonas Tragilaria Chiptomonas Chiamydomonas Chiamydomonas | rostratiformis delicatismis quadricauda ulna quadricauda ulna formosa tenus lacustris flos-aquae sp. 2 accularis tenera palea italica crotonensis ulna immetra minuta parvus globosa lanceolata hantschii pumila errosa plasystoma | ulna | | Cell-Motile Coll-Motile Collonial-Normotile Collonial-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Motile Multi-Filament Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Motile Filament Cell-Motile Filament Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Normotile | Cells/ml | 26 903
8.7677
17.5353
8.7677
17.5353
8.7677
8.7677
8.7677
108.3614
1.8683
31.7611
22.4196
74.732
57.9173
5.6049
1.8683
4.140.155
5.6049
1.8683
4.140.155
6.78714
4.75.999 | 0.0014602
0.0046667
0.0046667
0.00093334
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.0046667
0.004667
0.0050933
0.004667
0.0050933
0.004667
0.005093
0.005093
0.0014621
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.005267
0.0 |
26,303
8,7677
35,0707
17,5353
140,2826
8,7677
17,5353
4262,2106
1,8683
31,7611
22,4196
74,732
193,0557
16,8147
3,7366
101,9073
4440,156
5597,1847
2104,0137
67,8714
475,0999 | 0.00132
0.00044
0.00176
0.00076
0.00088
0.00706
0.24492
0.00182
0.00128
0.00128
0.00021
0.00096
0.23790
0.26770
0.100990
0.00390 | | unity Boundary 6/20/2 7/3/2 | //2001 // | 1314 88302 1315 1021 1109 1109 1109 1109 1109 1109 1109 | Bacillanophyta Chlorophyta Bacillanophyta Chyptophyta Bacillanophyta Bacillanophyta Bacillanophyta Chlorophyta Bacillanophyta Chlorophyta | Fragilariophyceae Chlorophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Chlorophyceae Chlorophyceae Dinophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Fragilariophyceae Cyanophyceae Cyanophyceae Chlorophyceae | Fragilanales Chlorococcales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Chlorococcales Seculorianales Baciliarales Baciliarales Baciliarales Baciliarales Baciliarales Baciliarales Baciliarales Caulacoseirales Fragilanales Fragilanales Coscillatonales Fragilanales Fragilanales Oscillatonales Chyptomonadales Achnarthales Thalassiosirales Baciliarales Cryptomonadales Chorococcales Volvocales Fragilanales Ochromonadales Chlorococcales Chlorococcales | Fragilariaceae Scenedesmaceae Fragilariaceae Fragilariaceae Fragilariaceae Occystaceae Nostocaceae Gymnodiniaceae Bacilariaceae Bacilariaceae Bacilariaceae Fragilariaceae Bacilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Chytomonadaceae Achinarthaceae Stephanodiscaceae Chiamydomonadaceae Achinarthaceae Chytomonadaceae Chiamydomonadaceae Bacilariaceae Cryptomonadaceae Chiamydomonadaceae Fragilariaceae Chytomonadaceae Chiamydomonadaceae Chiamydomonadaceae Chiamydomonadaceae | Synedra Scenedesmus Synedra Astenonella Diatoma Ouadrigula Astenonella Diatoma Ouadrigula Aphanizomenon Gymnodinium Nitzschia Synedra Nitzschia Synedra Synedra Synedra Synedra Synedra Synedra Synedra Synedra Coscillatoria Rhodomonas Stephanodiscus Nitzschia Chjamydomonas Stephanodiscus Nitzschia Chiptomonas Stephanodiscus Nitzschia Chiptomonas Stephanodiscus Fragilaria | delicatissima quadricauda ulna formosa tenuis lacustris flos-aquae sp. 2 acicularis tenora palea talica crotonerisis ulna limnetica minuta parvus globosa lanceolata hantschii pumila errosa playstigma | ulna | | Cell-Normatile Coll-Normatile Cell-Motile Cell-Motile Cell-Normatile Cell-Normatile Cell-Normatile Filament Cell-Normatile | Cells/ml | 8.7677
8.7677
8.7677
8.7677
8.7677
8.7677
1.86814
1.8683
31.7611
22.24196
74.732
57.9173
5.6049
3.7366
1.8683
4.140.156
3.597.1847
2.767
6.777
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774
6.7774 |
0.00046687
0.00046667
0.00046667
0.00046667
0.00046667
0.00046667
0.00046667
0.00046208
0.00014521
0.0024854
0.00580833
0.00450146
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.002462
0.0 | 8,7677
35,0707
17,5353
140,2826
8,7677
17,5353
4262,2106
1,8683
31,7611
22,4196
74,732
193,0557
16,847
3,7366
101,9073
4440,156
3597,1847
2104,0193
67,8714
475,0999 | 0.00044
0.001764
0.000786
0.000786
0.000786
0.000786
0.00010
0.001822
0.0010
0.001281
0.00129
0.00129
0.00129
0.00129
0.00129
0.00214
0.00214
0.0025
0.237901
0.237901
0.21020
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.12090
0.120 | | unty Boundary 6/20/2 7/3/2 | //2001 (/ | 8802
1315
1021
1109
12462
4041
6033
1221
1923
1424
1152
1152
1304
1452
1472
3043
1298
1298
1296
9436
1296
9436
1296
1301
1301
1301
1301
1301
1301
1301
130 | Chlorophyta Bacillanophyta Bacillanophyta Bacillanophyta Bacillanophyta Cyanophyta Pyrrhophyta Bacillanophyta Chytophyta Bacillanophyta Chytophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Chiorophyta Chiorophyta Chiorophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Bacillanophyta Chiorophyta Chiorophyta Bacillanophyta Chiorophyta Chiorophyta | Chtorophyceae Fragilarophyceae Fragilarophyceae Fragilarophyceae Fragilarophyceae Chtorophyceae Oyanophyceae Bacillarophyceae Bacillarophyceae Bacillarophyceae Bacillarophyceae Bacillarophyceae Coscinodiscophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyanophyceae Coscinodiscophyceae Bacillarophyceae Bacillarophyceae Chtorophyceae Bacillarophyceae Coscinodiscophyceae Coscinodiscophyceae Chtorophyceae Chtorophyceae Chtorophyceae Chtorophyceae Chtorophyceae Chtorophyceae Chtorophyceae Coscinodiscophyceae Chtorophyceae Chtorophyceae Chtorophyceae Coscinodiscophyceae Chtorophyceae Chtorophyceae Coscinodiscophyceae Coscinodiscophyceae | Chlorococcales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Fragilanales Chlorococcales Nostocales Gymnodinales Baciliarales Baciliarales Fragilanales Fragilanales Fragilanales Chyptomonadales Thalassiosirales Acharothales Thalassiosirales Baciliarales Acharothales Thalassiosirales Chyptomonadales Thalassiosirales Baciliarales Chyptomonadales Chyptomonadales Chyptomonadales Chyptomonadales Chorococcales Chiorococcales Chiorococcales Chiorococcales Chiorococcales | Scenedesmaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Nostocaceae Rostocaceae Bacillariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Chamydomonadaceae Chyptomonadaceae Stephanodiscaceae Bacillariaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Bacillariaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Fragilariaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae Chamydomonadaceae | Scenedesmus Synedra Astenonella Datoma Astenonella Datoma Quadrigula Aphanizomenon Gymnodinum Nitzschia Synedra Nitzschia Synedra Aulacoseira Fragilaria Synedra Oscillatonia Synedra Oscillatonia Stephanodiscus Chlemydomonas Stephanodiscus Chlemydomonas Chlemydomonas Tophomonas Chlemydomonas Tophomonas Chlemydomonas
Tophomonas Tophomonas Chlemydomonas | quadricauda ulna formosa tenus lacustris flos-aquae sp. 2 acicularis tenera palea tataica crotonensis ulna lametaca minuta panus globosa lanceolata pumila erosa plasystoma | ulna | | Colonial-Normotile Coll-Normotile Coll-Normotile Colonial-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Normotile Filament Cell-Normotile | Cells/ml | 8 7677
17.5353
8.7677
8.7677
8.7677
108.3514
1.8683
31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4.440.156
3597.1847
2.104.0137
67.8714
475.0999 | 0.00048687
0.00048687
0.00046667
0.00046667
0.00046667
0.00046867
0.00842208
0.00014521
0.0004884
0.00014521
0.005480833
0.00580833
0.00580833
0.00645146
0.00043562
0.000450146
0.00043562
0.00527511
0.20758085
0.16352842
0.00527511 | 35 0707
17 535 4
140 2826
8 7677
17 535 3
17 531 3
13 17611
22 4196
74 732
133 0557
16 8147
3 7366
101 9073
4 140 156
3597 1847
2104 0137
6 78 114
4 75 0999 | 0.00176:
0.00088:
0.00706
0.00706
0.00044
0.00088:
0.24492
0.00010
0.00010
0.00010
0.00010
0.00010
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021
0.00021 | | unty Boundary unty Boundary inty B | //2001 // | 1315
1021
1109
2462
4041
6033
1221
9504
9123
1434
1152
9506
4172
3043
1298
1298
1296
9436
3015
3015
3015
3015
3015
3015
3015
3016
3017
3017
3017
3017
3017
3017
3017
3017 | Bacillanophya
Bacillanophya
Bacillanophya
Chilorophya
Cyanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Chyophya
Bacillanophya
Chyophya
Chyophya
Chilorophya
Bacillanophya
Chilorophya
Bacillanophya
Chilorophya
Bacillanophya
Chilorophya | Fragilariophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Chlorophyceae Chlorophyceae Dinophyceae Bacillariophyceae Bacillariophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Cyanophyceae Cyanophyceae Cynpophyceae Coscinodiscophyceae Endilariophyceae Chytophyceae Bacillariophyceae Chorophyceae Chorophyceae Chytophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae | Fragilariales Fragilariales Fragilariales Fragilariales Chiorococcales Gymodinales Baciliariales Baciliariales Baciliariales Baciliariales Baciliariales Baciliariales Gymodinales Cryptomonadiales Conditionales Thalassiosiriales Baciliariales Osciliatoriales Cryptomonadiales Thalassiosiriales Baciliariales Cryptomonadiales Cryptomonadiales Cryptomonadiales Conditionales Conditio | Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Ocystaceae Ocystaceae Gyrmodriaceae Bacillariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Aulacoseriaceae Fragilariaceae Cryptomonadecaea Chiamydomonadecaea Achardriaceae Bacillariaceae Chiamydomonadecaea Chiamydomonadecaea Cryptomonadecaea Cryptomonadecaea Fragilariaceae Cryptomonadaceae Cryptomonadaceae | Synedra Astenonella Datoma Quadrigula Aphanizomenon Gymnodinium Nitzschia Synedra Nitzschia Synedra Aulacoseira Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Stephanodiscus Nitzschia Cnyptomonas | uina formosa terruis lacustris lacustris flos-aquae sp. 2 accularis tenera palea italica crotonensis uina limnetica minuta parvus globosa lanceolatra pumila errosa pumila pumila | ulna | | Cell-Nonmotile Colonial-Normotile Colonial-Normotile Cell-Normotile Colonial-Normotile Multi-Filament Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Normotile Filament Cell-Normotile | Cells/ml | 17.5353
8.7677
8.7677
8.7677
108.3614
1.8683
31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00093334
0.00046667
0.00046667
0.00046667
0.00044520
0.0014521
0.00248554
0.0017425
0.00580833
0.00450146
0.00043562
0.00043562
0.00043562
0.000450146
0.000527511
0.27958085
0.6352842
0.00527511
0.03692578
0.00044521 | 17.5353
140.2826
8.7677
17.5353
4262.2106
1.8683
31.7611
22.4196
74.732
193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 |
0.00088:
0.00706
0.00044
0.00088:
0.24492
0.00010
0.001828
0.00128
0.00128
0.00129
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00029
0.00020
0.0 | | unity Boundary unity Boundary Boun | //2001 // | 1021
1109
2462
4041
6033
1221
9504
9123
1434
1152
9506
4172
3043
1298
2082
1018
1296
9436
1305
1296
9436
1305
1305
1305
1305
1305
1305
1305
1305 | Bacillanophya
Bacillanophya
Cyanophya
Dymophya
Pymhophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Cyanophya
Bacillanophya
Cyanophya
Bacillanophya
Cyanophya
Bacillanophya
Cyanophya
Bacillanophya
Cyanophya
Bacillanophya
Chirophya
Bacillanophya
Bacillanophya
Bacillanophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya
Chirophya
Bacillanophya | Fragilariophyceae Chlorophyceae Chlorophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Cryptophyceae Cyanophyceae Cyanophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Bacillariophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Fragilanales Fragilanales Fragilanales Chlorococcales Nostocales Gymnodinales Baciliarales Fragilaniales Baciliarales Fragilaniales Fragilaniales Fragilaniales Fragilaniales Fragilaniales Fragilaniales Fragilaniales Fragilaniales Chytomonadales Achmarthales Thalassiosirales Baciliarales Chytomonadales Chorococcales Volvocales Fragilaniales Chorococcales Chlorococcales Chlorococcales | Fragilariaceae Fragilariaceae Oocystaceae Nostocaceae Rostocaceae Bacillariaceae Bacillariaceae Bacillariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Constitutionaceae Constitutionaceae Constitutionaceae Constitutionaceae Constitutionaceae Achinarithaceae Stephanodiscaceae Bacillariaceae Chiamydomonadaceae Bacillariaceae Chyptomonadaceae Fragilariaceae Chyptomonadaceae Chiamydomonadaceae Chiamydomonadaceae Constitutionaceae Constitutionaceaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeaeae | Asterionella Diatoma Quadrigula Aphanizomenon Qymnodnium Nitzschia Synedra Nitzschia Aulacoseira Fragilaria Synedra Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthas Achnanthas Achnanthas Tegilaria Chiamydomonas Tegilaria Fragilaria Fragilaria | formosa tenuis lacustris flos-aquae sp. 2 acicularis tenera palea italica crotonensis ulna firmetica minuta parvus globosa lanceolata hantschii pumila erosa plajstigma | | | Colonial-Normotile Cell-Normotile Colonial-Normotile Multi-Filament Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Normotile Filament Cell-Normotile Filament Cell-Normotile | Cells/ml | 8.7677
8.7677
8.7677
108.3614
1.8693
31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4140.156
67.871,1847
2104.0137
67.8714
475.0999
1.8693 | 0.0048667
0.00048667
0.00048667
0.00842208
0.00014521
0.0024854
0.0017425
0.00580833
0.00450146
0.00043562
0.00014521
0.32178174
0.27958085
0.6352842
0.00527511
0.003692578 | 140 2826
8 7677
17 5353
4262 2106
1.8683
31 7611
22 4196
74.732
193 0557
16.8147
3.7366
101 9073
4140 156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00706
0.00044
0.00088
0.24492
0.00010
0.00182
0.00429
0.01109
0.00096
0.23790
0.20670
0.12090
0.00390 | | unity Boundary 6/20/2 unity Boundary 7/3/2 | //2001
//2001 // | 1109 2462 4041 6033 1221 1434 1152 19504 19123 1434 1152 19506 14172 3043 1298 2082 2082 2085 8041 2031 1296 9397 1731 8041 2031 1434 2363 2211 44041 | Bacillanophyta Cyanophyta Cyanophyta Cyanophyta Bacillanophyta Chlorophyta | Fragilariophyceae Chlorophyceae Cyanophyceae Cyanophyceae Dinophyceae Bacillarophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Cyanophyceae Cyanophyceae Cynpophyceae Bacillariophyceae Chorophyceae Bacillariophyceae Chorophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Chorophyceae Chypophyceae Coscinodiscophyceae Coscinodiscophyceae | Fragilariales Chlorococcales Nostocales Nostocales Germodinales Baciliariales Baciliariales Fragilariales Baciliariales Fragilariales Fragilariales Fragilariales Coscillatoriales Coscillatoriales Cyptomonadales Thalassiosirales Baciliariales Chorocales Acharathales Thalassiosirales Baciliariales Coptomonadales Chorococales Chorococcales Chlorococcales Chlorococcales Chlorococcales Chlorococcales | Fragilariaceae Oocystaceae Nostocaceae Oocystaceae Nostocaceae Gymnodiniaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Cryptomonadeceae Chlamydomonadeceae Achinarihaceae Bacillariaceae Cryptomonadeceae Chjamydomonadeceae Cryptomonadeceae Fragilariaceae Cryptomonadeceae Cryptomonadeceae Cryptomonadeceae Cryptomonadeceae Contemonadeceae | Diatoma Cuadrigula Aphanizomenon Gymnodinium Nitzschia Synedra Nitzschia Aulacoseira Fragilaria Synedra Oscillatoria Stephanodiscus Chiamydomonas Stephanodiscus Nitzschia Cnyptomonas Chiamydomonas Fragilaria Chiptomonas | tenus lacustris flos-aquae sp. 2 accularis tenera palea italica crotonensis ulna linnetica minuta parvus globosa lanceolata pumila pumila pumila pumila pumila pumila pumila | | | Cell-Normatile Colonial-Normatile Multi-Filament Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Lateral-Filament Cell-Monmatile Filament Cell-Monmatile Cell-Normatile Cell-Normatile Cell-Normatile Cell-Normatile Cell-Normatile Cell-Normatile Cell-Normatile Cell-Normatile | Cells/ml | 8 7677
8 7677
108 3614
1,8683
31,7611
22,4196
74,732
57,9173
5,6049
3,7366
1,8683
4140,156
3597,1847
2104,0137
67,8714
475,0999
1,8683 | 0.00046667
0.00046667
0.00042208
0.00014521
0.00248854
0.0017425
0.00580833
0.00450146
0.00029042
0.00014521
0.27958085
0.16352842
0.00527511
0.003692578
0.0004521 | 8 7677
17 5353
4262 2106
1.9683
31.7611
22.4196
74.732
193.0567
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.9683 | 0.00044
0.00088
0.24492
0.00108
0.00128
0.00429
0.011093
0.00021
0.00021
0.00585
0.23790
0.20670
0.12090
0.00390 | | unty Boundary 7/3/20 | //2001 | 2462
4041
6033
1221
9504
9123
1434
1152
9506
4172
3043
1298
2082
1018
1296
9436
3015
2085
3015
2085
1731
8041
2031
1434
2032
2032
2032
2032
2032
2032
2032
2 | Chlorophyta Chyanophyta Pyrrhophyta Sacillanophyta Chyanophyta Chyanophyta Sacillanophyta Chlorophyta Sacillanophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Sacillanophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta | Chlorophyceae Cyanophyceae Dinophyceae Bacillartophyceae Bacillartophyceae Bacillartophyceae Bacillartophyceae Bacillartophyceae Coscinodiscophyceae Fragilartophyceae Cyanophyceae Cyanophyceae Cyanophyceae Coscinodiscophyceae Coscinodiscophyceae Bacillartophyceae Bacillartophyceae Cospondiscophyceae Cospondiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae | Chlorococcales Nostocales Gymnodinales Baciliarates Fragilariales Authorocales Volvocales Baciliarates Cryptomonadales Cryptomonadales Volvocales Fragilariales Ochromonadales Ochromonadales Chlorococcales | Occystaceae Nostocaceae Gymnodnisceae Bacillariaceae Bacillariaceae Bacillariaceae Bacillariaceae Bacillariaceae Bacillariaceae Fragillariaceae Fragilariaceae Fragilariaceae Cuptomonadaceae Achnarthaceae Stephanodiscaceae Chlamydomonadaceae Bacillariaceae Crystomonadaceae Bacillariaceae Crystomonadaceae Chlamydomonadaceae Chlamydomonadaceae Chlamydomonadaceae | Quadrigula Aphanizomenon Gymnodnium Nitzschia Synedra Nitzschia Aulacoseira Fragilaria Synedre Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthas Achnanthas Stophanodiscus Nitzschia Cyptormonas Chlamydomonas Fragilaria | lacustris flos-aquae sp. 2 acicularis tenera palea talica crotonensis ulna limnetca minuta parvus globosa lanceolata hantschii pumila erosa playstigma | | | Colonial-Normotile Multi-Filament Cell-Motile Cell-Motile Cell-Motile Cell-Motile Cell-Motile Filament Lateral-Filament Cell-Normotile Filament Cell-Normotile Cell-Motile | Cells/ml | 8 7677
108 3614
1,8683
31,7611
22,4196
74,732
57,9173
5,6049
3,7366
1,8683
4140,156
3,597,1847
2104,0137
67,8714
475,0999
1,8683 | 0.00048667
0.00842208
0.00014521
0.00014521
0.00246854
0.0017425
0.00580833
0.00450146
0.00043562
0.0029042
0.00014521
0.2795808
0.16352842
0.00527511
0.003692578
0.003692578 | 17.5353
4262.2106
1.8683
31.7611
22.4196
74.732
193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00088
0.24492
0.00010
0.00182
0.00128
0.00429
0.01109
0.00096
0.00021
0.00585
0.23790
0.20670
0.12090
0.00390 | | untly Boundary 7/8/20 | 2001 | 4041
6033
1221
9504
9123
1434
1152
9506
14172
9506
14172
9506
14172
9506
1298
1298
1298
1298
1296
13015
2082
1018
1296
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
13015
1 | Cyanophyta Pyrrhophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chyanophyta Bacillariophyta Chyanophyta Bacillariophyta Chyanophyta
Bacillariophyta Chyanophyta Bacillariophyta Bacillariophyta Bacillariophyta Chilorophyta Chilorophyta Chilorophyta Chilorophyta Chilorophyta Bacillariophyta Chilorophyta Bacillariophyta Chilorophyta Bacillariophyta Chilorophyta Bacillariophyta Chilorophyta Chilorophyta | Oyenophyceae Dinophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Fragilariophyceae Cyapophyceae Cyapophyceae Coscinodiscophyceae Bacillariophyceae Coscinodiscophyceae Bacillariophyceae Coscinodiscophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Nostocales Gymnodinales Baciliarates Gymnodinales Baciliarates Baciliarates Baciliarates Baciliarates Aulacoseriales Fragilariales Fragilariales Fragilariales Fragilariales Fragilariales Thalassiosirales Baciliarates Cyptomonadales Baciliarates Cyptomonadales Thalassiosirales Baciliarates Cyptomonadales Cyptomonadales Cyptomonadales Cyptomonadales Chiorococcales Chiorococcales Chiorococcales Chiorococcales | Nostocaceae Gymnodiniaceae Bacillariaceae Bacillariaceae Fragilariaceae Aulacoseriaceae Fragilariaceae Fragilariaceae Fragilariaceae Fragilariaceae Coscilatoriaceae Cyptomonadaceae Chlamydomonadaceae Stephanodiscaceae Bacillariaceae Criptomonadaceae Griptomonadaceae Criptomonadaceae Criptomonadaceae Criptomonadaceae Criptomonadaceae Criptomonadaceae | Aphanizomenon Gymnodrium Ntzschia Synedra Ntzschia Synedra Ntzschia Aulacoseira Fragilaria Synedra Oscillatonia Stophanodiscus Chlemydomonas Stophanodiscus Chlemydomonas Chlomydomonas Tophanodiscus Ntzschia Cryptomonas Chlamydomonas Chlamydomonas Fragilaria | sp. 2 acicularis tenera palea italica crotonensis ulna limnetica minuta parvus globosa lanceolata hantschii pumila erosa playstigma | | | Multi-Filament Cell-Motile Cell-Motile Cell-Normotile Cell-Normotile Filament Leteral-Filament Cell-Monmotile Filament Cell-Monmotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile Cell-Normotile | Cells/ml | 108.3614
1.8683
31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00842208
0.00014521
0.0024854
0.0017425
0.00580833
0.00450146
0.000450146
0.00045562
0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.03692578 | 1,8683
31,7611
22,4196
74,732
193,0557
16,8147
3,7366
101,9073
4140,156
3597,1847
2104,0137
67,8714
475,0999
1,8683 | 0.00010
0.00182
0.00128
0.00429
0.01109
0.00096
0.00021
0.00585
0.23790
0.20670
0.12090
0.00390 | | unty Boundary 7/3/2/2 unty Boundary 7/3/2 | (2001 (200 | 1221 9504 9123 14344 1152 9506 4172 9506 4172 9506 1298 1 | Pyrhophyte Bacillariophyte Chilorophyte Bacillariophyte Chilorophyte Chilorophyte Chilorophyte Bacillariophyte Chilorophyte Bacillariophyte Chilorophyte Bacillariophyte Chilorophyte | Dinophyceae Bacillarothyceae Fragilariophyceae Goscinodiscophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Cyanophyceae Cyanophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Chynophyceae Coscinodiscophyceae | Baciliarales Fragilariales Fragilariales Baciliarales Aulacoseirales Fragilariales Fragilariales Fragilariales Fragilariales Cnytomonadales Thalassiosirales Baciliarales Cryptomonadales Baciliarales Cryptomonadales Thalassiosirales Baciliarales Cryptomonadales Cryptomonadales Cryptomonadales Cryptomonadales Chorococcales Chiorococcales Chiorococcales Chiorococcales | Gymnodiniaceae Bacillariaceae Fragilariaceae Bacillariaceae Bacillariaceae Bacillariaceae Aulacoseriaceae Fragilariaceae Fragilariaceae Cryptomonadaceae Achinarthaceae Stephanodiscaceae Bacillariaceae Cryptomonadaceae Achinarthaceae Cryptomonadaceae Fragilariaceae Cryptomonadaceae Bacillariaceae Cryptomonadaceae Fragilariaceae Chiamydomonadaceae Fragilariaceae | Gymnodnium
Nitzschia
Synedra
Nitzschia
Aulacoseira
Fragilaria
Synedra
Oscillatoria
Rhodomonas
Stephanodiscus
Chlamydomonas
Stephanodiscus
Nitzschia
Cnyptomonas
Chiamydomonas
Fragilaria | sp. 2 acicularis tenera palea italica crotonensis ulna limnetica minuta parvus globosa lanceolata hantschii pumila erosa playstigma | | | Cell-Mottile Cell-Nonmotile Cell-Nonmotile Filament Lateral-Filament Cell-Nonmotile Filament Cell-Mottile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile | Cells/ml | 31.7611
22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00246854
0.0017425
0.00580833
0.00580833
0.00450146
0.00043562
0.00029042
0.30178174
0.27958085
0.16352842
0.00527511
0.03692578
0.03692578 | 31.7611
22.4196
74.732
193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00182
0.00128
0.00429
0.01109
0.00096
0.00021
0.00585
0.23790
0.20670
0.12090
0.00390 | | untly Boundary 78/2/2 |
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001 | 9504
9123
1434
1152
9506
4172
3043
1298
2082
1018
1298
9436
3015
2085
9436
3015
1298
9436
3015
2085
1398
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498
1498 | Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Cyptophyta Cyptophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta | Bacillariophyceae Fragilariophycae Bacillariophycae Bacillariophycae Coscinodiscophyceae Fragilariophycae Fragilariophycae Cyprophycae Cyprophycae Coscinodiscophycae Coscinodiscophycae Bacillariophycae Bacillariophycae Coscinodiscophycae Bacillariophycae Chlorophycae Chlorophycae Chlorophycae Chlorophycae Chlorophycae Coscinodiscophycaea Coscinodiscophycaea Coscinodiscophycaea | Fragilariales Bacilitrales Aulacoseirales Fragilariales Aulacoseirales Fragilariales Oscillatonales Oscillatonales Oscillatonales Volvocales Achnarthales Thalassiosirales Bacilitrates Cryptomonadieles Volvocales Fragilariales Ochromonadales Ochromonadales Ochromonadales Chiorococcales | Fragilariaceae Bacillariaceae Aulacoseriaceae Fragilariaceae Fragilariaceae Contromonadaceae Contromonadaceae Achardhocaceae Achardhocaceae Achardhocaceae Achardhaceae Chjarmonadaceae Fragilariaceae Chjarmonadaceae Fragilariaceae Chjarmonadaceae Fragilariaceae Chjarmonadaceae Fragilariaceae | Synedra Nitzschia Aulacoseira Aulacoseira Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnarthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Fragilaria | tenera palea palea jitalica crotonensis ulna irmnetica minuta parvus globosa lanceolata hantzschii pumila erosa playstigma | | | Cell-Nonmotile Cell-Motile Filament Lateral-Filament Cell-Nonmotile Filament Cell-Motile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile | Cells/ml | 22.4196
74.732
57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.0017425
0.00580833
0.00450146
0.00043562
0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578 | 22.4196
74.732
193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00128
0.00429
0.01109
0.00096
0.00021
0.00585
0.23790
0.2067
0.12090
0.00390 | | unty Boundary 7/3/2/2 7/1/2/2 | 2001 | 9123
1434 1
1152 1
9506 1
4172 3043
1298 1
2082 1018 1
1296 9436
9436 1
3015 2085
9436 1
1296 | Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Cryptophyta Bacillariophyta Cryptophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chyptophyta Bacillariophyta Bacillariophyta Bacillariophyta Chirophyta | Bacillariophyceae Fragilariophyceae Fragilariophyceae Fragilariophyceae Cyanophyceae Cyanophyceae Cyptophyceae Coscinodiscophyceae Coscinodiscophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae
Coscinodiscophyceae | Bacillarales Aulacoseirales Fragilariales Fragilariales Fragilariales Fragilariales Coscillatoriales Contrologianiales Contrologianiales Volvocales Bacillarales Contrologianiales Volvocales Fragilariales Ochromonadales Chiorococcales Chiorococcales | Bacillariaceae Aulacosariceae Fragilariaceae Fragilariaceae Fragilariaceae Cosillatoriaceae Chyptomonadaceae Achnarthaceae Stephanodiscaceae Achnarthaceae Stephanodiscaceae Chlarmydomonadaceae Achnarthaceae Chyptomonadaceae Grillariaceae Chyptomonadaceae Fragilariaceae Cotromonadaceae | Nitzschia Aulacoseira Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Ottpatronia Cryptomonas Chlamydomonas Fragilaria | palea italica crotonensis ulna irmnetica minuta parvus globosa lanceolata hantzschii pumila erosa platystigma | | | Cell-Motile Filament Lateral-Filament Cell-Monmotile Filament Cell-Motile Cell-Motile Cell-Monmotile Cell-Nonmotile Cell-Nonmotile Cell-Motile Cell-Motile | Celis/ml | 74.732
57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00580833
0.00450146
0.00043562
0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 74.732
193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00429
0.01108
0.00096
0.00025
0.00585
0.23790
0.2067
0.12090
0.00390 | | untly Boundary 7/8/2/2 | 2001 | 1434
1152
9506
4172
3043
1298
1298
1298
1018
1296
9436
3015
2085
9397
1731
8041
2031
8041
2031
8041
2031
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8041
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051
8051 | Bacillariophyta Bacillariophyta Bacillariophyta Cyanophyta Cyanophyta Cryptophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Cryptophyta Chlorophyta | Coscinodiscophyceae Fragilariophyceae Fragilariophyceae Cyptophyceae Cyptophyceae Coscinodiscophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Coscinodiscophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae | Aulacoseirales Fragilariales Fragilariales Fragilariales Oscillatoriales Thalassiosirales Volvocales Achnarthales Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chiorococcales Chiorococcales | Aulacoseriaceae Fragilariaceae Fragilariaceae Fragilariaceae Coscilatoriaceae Coptomonadecaea Chlamydomonadecaea Achnarthaceae Stephanodiscaceae Achnarthaceae Stephanodiscaceae Chlamydomonadaceae Cryptomonadaceae Fragilariaceae Cryptomonadaceae Coptomonadaceae Coptomonadaceae | Aulacoseira Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Chlamydomonas Cryptomonas Cryptomonas Chlamydomonas Fragilaria | italica crotonensis ulna limnetica minuta parvus globosa lanceolata hantzschii pumila erosa platystigma | | | Filament Lateral-Filament Cell-Nonmotile Filament Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Motile | Cells/ml | 57.9173
5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00450146
0.00043562
0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 193.0557
16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.01109
0.00096
0.00021
0.00585
0.23790
0.2067
0.12090
0.00390 | | unty Boundary 7/3/20 Boun | 2001 2 | 1152 9506 4172 3043 1298 2082 1018 1296 9436 3015 2085 9397 1731 8041 2031 434 4268 2211 4041 4041 | Bacillariophyta Bacillariophyta Cyanophyta Cyptophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta Bacillariophyta Chirophyta Chirophyta Chirophyta Chlorophyta Bacillariophyta Chlorophyta Bacillariophyta Chlorophyta Bacillariophyta Chlorophyta Bacillariophyta Chlorophyta | Fragilariophyceae Cyanophyceae Cyanophyceae Cyanophyceae Cyptophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Bacillariophyceae Coyptophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Fragilariales Fragilariales Oscillatoriales Oscillatoriales Cryptomonadales Thalassiosirales Volvocales Achnanthales Thalassiosirales Bacillariales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Fragilariaceae Fragilariaceae Gostilatoriaceae Costilatoriaceae Chytomonadaceae Chytomonadaceae Achnarthaceae Stophanodiscaceae Bacillariaceae Chytomonadaceae Gryptomonadaceae Fragilariaceae Chiamydomonadaceae Fragilariaceae | Fragilaria Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Fragilaria | crotonensis ulna limnetica minuta parvus globosa lanceolata hantzschii pumila erosa platystigma | | | Lateral-Filament Cell-Nonmotile Filament Cell-Motile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile Cell-Nontolie | Cells/ml | 5.6049
3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00043562
0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 16.8147
3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00096
0.0002
0.0058
0.23796
0.2067
0.12096
0.00396 | | unty Boundary 7/3/2/2 7/1/2/2 | (2001
(2001 (200 | 9506 4172 3043 1298 1298 1296 19436 13015 2085 9397 1731 8041 2363 2211 4041 4041 | Bacillariophyta Cyanophyta Cyanophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta | Fragilariophyceae Cyanophyceae Cynophyceae Coscinodiscophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Bacillariophyceae Chlorophyceae Chlorophyceae Chlysophyceae Chlysophyceae Chlorophyceae Coscinodiscophyceae | Fragilariales Oscillatoriales Cryptomonadales Thalassiosirales Volvocales Achnanthales Thalassiosirales Bacillariales Cryptomonadales Volvocales Fragilariales Octromonadales Chlorococcales Chlorococcales | Fragilariaceae Oscillatoriaceae Cryptomonadaceae Stephanodiscaceae Chlamydomonadaceae Achnanthaceae Stephanodiscaceae Cryptomonadaceae Bacillariaceae Cryptomonadaceae Fragilariaceae Ochromonadaceae Ochromonadaceae | Synedra Oscillatoria Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Fragilaria | ulna irmnetica minuta parvus globosa lanceolata hantzschii pumlla erosa platystigma | | | Cell-Nonmotile Filament Cell-Motile Cell-Nonmotile Cell-Motile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile | Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml | 3.7366
1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00029042
0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 3.7366
101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.0002
0.0058
0.2379
0.2067
0.1209
0.0039 | | unity Boundary 78,202 | 2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001 | 4172
3043
1298
1298
1018
1296
9436
3015
2085
9397
1731
8041
2031
1434
12363
2211
4041 | Cyanophyta Cryptophyta Bacillariophyta Chlorophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Cryptophyta Chlorophyta | Cyanophyceae Cyntophyceae Coscinodiscophyceae Chorophyceae Bacillarophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae Chytophyceae Chorophyceae Chiorophyceae Chiorophyceae Chiorophyceae Chiorophyceae Coscinodiscophyceae | Oscillatoriales Cryptomonadales Thalassiosirales Volvocales Achnanthales Thalassiosirales Bacillarales Cryptomonadales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Oscilatoriaceae Cryptomonadaceae Stephanodiscaceae Chlamydomonadaceae Achnarthaceae Stephanodiscaceae Bacillariaceae Cryptomonadaceae Chlamydomonadaceae Fragilariaceae Ochromonadaceae Ochromonadaceae | Oscillatoria
Rhodomonas
Stephanodiscus
Chlamydomonas
Achnanthes
Stephanodiscus
Nitzschia
Cryptomonas
Chlamydomonas
Fragilaria | limnetica
minuta
parvus
globosa
lanceolata
hantzschii
pumila
erosa
platystigma | | | Filament Cell-Motile Cell-Nonmotile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Nonmotile | Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml Cells/ml | 1.8683
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.00014521
0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 101.9073
4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.0058
0.2379
0.2067
0.1209
0.0039 | | unty Boundary 7/3/2/2 7/1/2/2 | 2001 | 3043
1298
1298
1018
11296
1018
1296
13015
2085
9397
1731
8041
2031
1434
12363
2211
4041 | Cryptophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta Bacillariophyta Bacillariophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta | Cryptophyceae Coscinodiscophyceae Chlorophyceae Bacillartophyceae Bacillartophyceae Coscinodiscophyceae Bacillartophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae | Cryptomonadales Thalassiosirales Volvocales Achnanthales Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilanales Ochromonadales Chlorococcales Chlorococcales | Cryptomonadaceae Stephanodiscaceae Chlamydomonadaceae Achnanthaceae Stephanodiscaceae Bacillariaceae Cryptomonadaceae Chlamydomonadaceae Fragilariaceae Ochromonadaceae | Rhodomonas Stephanodiscus Chlamydomonas Achnanthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Fragilaria | minuta parvus globosa lanceolata hantzschii pumila erosa platystigma | nannoplanctica | | Cell-Motile Cell-Nonmotile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Motile | Cells/ml
Cells/ml
Cells/ml
Cells/ml
Cells/ml | 4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.32178174
0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 4140.156
3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.2379
0.2067
0.1209
0.0039 | | unty Boundary 78/2/2 | /2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001
/2001 | 1298 1298 1018 1296 19436 3015 2085 9397 1731 8041 12031 1434 2363 2211 4041 1018
1018 | Bacillariophyta Chlorophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta | Coscinodiscophyceae Chlorophyceae Chlorophyceae Bacillariophyceae Bacillariophyceae Chyptophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae Coscinodiscophyceae Coscinodiscophyceae | Thalassiosirales Volvocales Achanthales Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Stephanodiscaceae
Chlamydomonadaceae
Achnanthaceae
Stephanodiscaceae
Bacillariaceae
Cryptomonadaceae
Chlamydomonadaceae
Fragilariaceae
Ochromonadaceae | Stephanodiscus
Chlamydomonas
Achnanthes
Stephanodiscus
Nitzschia
Cryptomonas
Chlamydomonas
Fragilaria | parvus
globosa
lanceolata
hantzschii
pumila
erosa
platystigma | Territorial | | Cell-Nonmotile Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Motile | Cells/ml
Cells/ml
Cells/ml
Cells/ml
Cells/ml | 3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.27958085
0.16352842
0.00527511
0.03692578
0.00014521 | 3597.1847
2104.0137
67.8714
475.0999
1.8683 | 0.2067
0.1209
0.0039 | | unty Boundary 7/8/20 7/1/20 | 2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001 | 2082
1018
1296
9436
3015
2085
9397
1731
8041
2031
1434
2363
2211
4041 | Chlorophyta Bacillariophyta Bacillariophyta Bacillariophyta Chlorophyta | Chlorophyceae Bacillariophyceae Coscinodiscophyceae Bacillariophyceae Cryptophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Volvocales Achnanthales Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Chlamydomonadaceae
Achnarthaceae
Stephanodiscaceae
Bacillariaceae
Cryptomonadaceae
Chlamydomonadaceae
Fragilariaceae
Ochromonadaceae | Chlamydomonas
Achnanthes
Stephanodiscus
Nitzschia
Cryptomonas
Chlamydomonas
Fragilaria | globosa
lanceolata
hantzschii
pumila
erosa
platystigma | | | Cell-Motile Cell-Nonmotile Cell-Nonmotile Cell-Motile | Cells/ml
Cells/ml
Cells/ml
Cells/ml | 2104.0137
67.8714
475.0999
1.8683 | 0.16352842
0.00527511
0.03692578
0.00014521 | 2104.0137
67.8714
475.0999
1.8683 | 0.1209 | | untly Boundary 7/3/2/2 7/1/2/2 | 2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001 | 1018 1296 19436 13015 2085 9397 1731 8041 2031 1434 12363 2211 4041 | Bacillariophyta Bacillariophyta Bacillariophyta Cryptophyta Chlorophyta | Bacillariophyceae Coscinodiscophyceae Bacillariophyceae Cryptophyceae Chlorophyceae Chlorophyceae Chrysophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Achnanthales Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Achnanthaceae Stephanodiscaceae Bacillariaceae Cryptomonadaceae Chlamydomonadaceae Fragilariaceae Ochromonadaceae | Achnanthes Stephanodiscus Nitzschia Cryptomonas Chlamydomonas Fragilaria | lanceolata
hantzschii
pumila
erosa
platystigma | | | Cell-Nonmotile
Cell-Nonmotile
Cell-Motile | Cells/ml
Cells/ml
Cells/ml | 67.8714
475.0999
1.8683 | 0.00527511
0.03692578
0.00014521 | 67.8714
475.0999
1.8683 | 0.0039 | | unty Boundary 78,222 | 2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001
2001 | 1296 9436 3015 2085 9397 1731 8041 2031 1434 12363 2211 4041 | Bacillariophyta Bacillariophyta Cryptophyta Chlorophyta Bacillariophyta Chrysophyta Chlorophyta Chlorophyta Bacillariophyta Chlorophyta Chlorophyta Chlorophyta Chlorophyta | Coscinodiscophyceae Bacillariophyceae Cryptophyceae Chlorophyceae Fragillariophyceae Chlorophyceae Chlorophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Thalassiosirales Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Stephanodiscaceae Bacillariaceae Cryptomonadaceae Chlamydomonadaceae Fragilariaceae Ochromonadaceae | Stephanodiscus
Nitzschia
Cryptomonas
Chlamydomonas
Fragilaria | hantzschii
pumila
erosa
platystigma | | | Cell-Nonmotile
Cell-Motile | Cells/ml
Cells/ml | 475.0999
1.8683 | 0.00014521 | 475.0999
1.8683 | | | unty Boundary 7/3/2/2 7/1/2/2 | 2001 2 | 9436 1
3015 2085 9397 1
731 8041 2031 1434 1
2363 2211 4041 | Bacillariophyta
Cryptophyta
Chlorophyta
Bacillariophyta
Chlorophyta
Chlorophyta
Chlorophyta
Bacillariophyta
Chlorophyta | Bacillariophyceae
Cryptophyceae
Chlorophyceae
Fragilariophyceae
Chrysophyceae
Chlorophyceae
Chlorophyceae
Coscinodiscophyceae | Bacillarales Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Bacillariaceae
Cryptomonadaceae
Chlamydomonadaceae
Fragilariaceae
Ochromonadaceae | Nitzschia
Cryptomonas
Chlamydomonas
Fragilaria | pumila
erosa
platystigma | | | Cell-Motile | Cells/ml | 1.8683 | 0.00014521 | 1.8683 | 0.0273 | | untly Boundary 7/3/2/2 untly Boundary 7/1/2/2 | 2001
2001
2001
2001
2001
2001
2001
2001 | 3015
2085
9397
1731
8041
2031
1434
2363
2211
4041 | Cryptophyta
Chlorophyta
Bacillariophyta
Chrysophyta
Chlorophyta
Chlorophyta
Bacillariophyta
Chlorophyta | Cryptophyceae Chlorophyceae Fragilariophyceae Chrysophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Cryptomonadales Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Cryptomonadaceae
Chlamydomonadaceae
Fragilariaceae
Ochromonadaceae | Cryptomonas
Chlamydomonas
Fragilaria | erosa
platystigma | | | | | | | | 0.0001 | | unty Boundary 7/3/2/ 7/1/2/ | 2001
2001
2001
2001
2001
2001
2001
2001 | 9397 1731 8041 2031 1434 1 2363 2211 4041 | Chlorophyta Bacillariophyta Chrysophyta Chlorophyta Chlorophyta Chlorophyta Bacillariophyta Chlorophyta | Chlorophyceae Fragilariophyceae Chrysophyceae Chlorophyceae Chlorophyceae Coscinodiscophyceae | Volvocales Fragilariales Ochromonadales Chlorococcales Chlorococcales | Chlamydomonadaceae
Fragilariaceae
Ochromonadaceae | Chlamydomonas
Fragilaria | | | | | | | | 475.0999 | 0.0273 | | unity Boundary 78/20/ | 2001
2001
2001
2001
2001
2001
2001
2001 | 1731
8041
2031
1434
2363
2211
4041 | Chrysophyta
Chlorophyta
Chlorophyta
Bacillariophyta
Chlorophyta | Chrysophyceae
Chlorophyceae
Chlorophyceae
Coscinodiscophyceae | Ochromonadales
Chlorococcales
Chlorococcales | Ochromonadaceae | | | | | Cell-Motile | Cells/ml | 1425.2996 | 0.11077732 | 1425.2996 | 0.0819 | | unty Boundary 7/3/20 unty Boundary 7/3/20 unty Boundary 7/1/20 | 2001
2001
2001
2001
2001
2001
2001
2001 | 8041
2031
1434
2363
2211
4041 | Chlorophyta
Chlorophyta
Bacillariophyta
Chlorophyta | Chlorophyceae
Chlorophyceae
Coscinodiscophyceae | Chlorococcales
Chlorococcales | | Erkenia | | vaucheriae | | Lateral-Filament | Cells/ml | 67.8714 | 0.00527511 | | 0.011 | | unty Boundary 7/3/2/2 unty Boundary 7/1/2/2 | /2001
/2001
/2001
/2001
/2001
/2001 | 2031
1434
2363
2211
4041 | Chlorophyta
Bacillariophyta
Chlorophyta | Chlorophyceae
Coscinodiscophyceae | Chlorococcales | Oocystaceae | | subaequiciliata | | | Cell-Motile | Cells/ml | 67.8714 | 0.00527511 | 67.8714 | 0.0039 | | unity Boundary 7/12/2 | /2001
/2001
/2001
/2001
/2001 | 1434
2363
2211
4041 | Bacillariophyta
Chlorophyta | Coscinodiscophyceae | | | Monoraphidium | capricomutum | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.00527511 | 67.8714 | 0.0039 | | unty Boundary 7/12/2 | /2001
/2001
/2001
/2001 | 2363
2211
4041 | Chlorophyta | | | Oocystaceae | Ankistrodesmus | falcatus | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.00527511 | 67.8714 | 0.0039 | | unty Boundary 7/12/2 | /2001
/2001
/2001 | 2211
4041 | | Chiorophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 94.5827
3.5031 | 0.00585935 | 342.8622
28.0245 | 0.0178 | | unity Boundary 7/12/2 | /2001
/2001 | 4041 | Chiorophyta | | Chlorococcales |
Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | | 0.00021702 | 74.7315 | 0.0014 | | unity Boundary 7/12/2 | /2001 | | Ouenanh to | Chlorophyceae | Chlorococcales
Nostocales | Dictyosphaeriaceae
Nostocaceae | Dictyosphaerium | pulchellum | | | Colonial-Nonmotile
Multi-Filament | Cells/ml
Cells/ml | 14.0122
45.5398 | 0.00086805 | 1705.6706 | 0.0038 | | unty Boundary 7/12/2 | | | Cyanophyta
Cryptophyta | Cyanophyceae
Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Aphanizomenon
Cryptomonas | flos-aquae
erosa | | | Cell-Motile | Cells/ml | 129.6133 | 0.00202111 | 129.6133 | 0.0067 | | unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2 | 72001 | | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | 61030 | | | Cell-Motile | Cells/ml | 3.5031 | 0.00021702 | 3.5031 | 0.0001 | | unity Boundary 7/12/2
unity Boundary 7/12/2
unity Boundary 7/12/2
unity Boundary 7/12/2
unity Boundary 7/12/2 | | 2382 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | boryanum | | | Colonial-Nonmotile | Cells/ml | 3.5031 | 0.00021702 | 21.0184 | 0.0010 | | unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2 | | | Bacillariophyta | Bacillariophyceae | Surirellales | Surirellaceae | Surirella | brebissonii | kuetzingii | | Cell-Motile | Cells/ml | 3.5031 | 0.00021702 | 3.5031 | 0.0001 | | unty Boundary 7/12/2
unty Boundary 7/12/2
unty Boundary 7/12/2 | | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | | | | Colonial-Nonmotile | Cells/ml | 3.5031 | 0.00021702 | 224.196 | 0.0116 | | unty Boundary 7/12/2
unty Boundary 7/12/2 | | 2021 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Actinastrum | hantzschii | | | Cell-Nonmotile | Cells/ml | 10.5092 | 0.00065104 | 84.0735 | 0.0043 | | unty Boundary 7/12/2
unty Boundary 7/12/2 | /2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 10.5092 | 0.00065104 | 10.5092 | 0.0005 | | unty Boundary 7/12/2 | /2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 3.5031 | 0.00021702 | 3.5031 | 0.0001 | | | | 6034 | Pymhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 3.5031 | 0.00021702 | 3.5031 | 0.0001 | | unty Boundary 7/12/2 | | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 4006.2985 | 0.24818833 | 4006.2985 | 0.2081 | | unty Boundary 7/12/2 | | | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 6174.413 | 0.38250202 | 6174.413 | 0.320 | | unty Boundary 7/12/2 | | | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | cryptotenella | | | Cell-Motile | Cells/ml | 11.6769 | 0.00072338 | 11.6769 | 0.0006 | | unty Boundary 7/12/2 | | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlorococcae | Chlamydomonas | platystigma | | 2.0.0 um enharical | Cell-Motile | Cells/ml | 424.1963
2073.8486 | 0.02627876 | 424.1963
2073.8486 | 0.0220 | | unty Boundary 7/12/2
unty Boundary 7/12/2 | | 2683
1446 | Chlorophyta
Bacillariophyta | Chlorophyceae
Coscinodiscophyceae | Chlorococcales
Thalassiosirales | Chlorococcaceae
Stephanodiscaceae | Stephanodiscus | parvus | - 4 | 2-9.9 um spherical | Cell-Nonmotile
Cell-Nonmotile | Cells/ml
Cells/ml | 424.1963 | 0.12847396 | 424.1963 | 0.0220 | | unty Boundary 7/12/2 | | | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | ' | | Cell-Motile | Cells/ml | 377.0634 | 0.0233589 | 377.0634 | 0.0195 | | unty Boundary 7/12/2 | | 1570 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Ochromonas | parea | | | Cell-Motile | Cells/ml | 11.6769 | 0.00072338 | 11.6769 | 0.0006 | | unty Boundary 7/12/2 | | 2487 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | dimorphus | | | Colonial-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 188.5317 | 0.0097 | | unty Boundary 7/12/2 | | | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 518.4622 | 0.03211849 | 518.4622 | 0.0269 | | unty Boundary 7/12/2 | | 8308 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | serratus | | | Colonial-Nonmotile | Cells/ml | 94.2658 | 0.00583972 | 188.5317 | 0.0097 | | unty Boundary 7/12/2 | | | Bacillariophyta | Bacillariophyceae | Achnanthales | Cocconiedaceae | Cocconeis | placentula | lineata | | Cell-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 47.1329 | 0.0024 | | unty Boundary 7/12/2 | | 1731 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 188.5317 | 0.01167945 | 188.5317 | 0.0097 | | unty Boundary 7/12/2 | | | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | tenera | | | Cell-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 47.1329 | 0.0024 | | unty Boundary 7/12/2 | | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 471.3292 | 0.02919863 | 471.3292 | 0.024 | | unty Boundary 7/12/2 | | 1127 | Chrysophyta | Chrysophyceae | Ochromonadales | Dinobryaceae | Dinobryon | divergens | | | Colonial-Motile | Cells/ml | 47.1329 | 0.00291986 | 47.1329 | 0.0024 | | unty Boundary 7/12/2 | | 8226 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | intermedius | | | Colonial-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 188.5317 | 0.0097 | | unty Boundary 7/12/2 | | 2031 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Ankistrodesmus | falcatus | | | Cell-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 47.1329 | 0.0024 | | unty Boundary 7/12/2 | 72001 | | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 141.3988 | 0.00875959 | 329.9258 | 0.0171 | | unty Boundary 7/12/2
unty Boundary 7/12/2 | | 2491
2462 | Chlorophyta | Chlorophyceae | Chlorococcales
Chlorococcales | Chlorococcaceae | Schroederia | judayi
lacustris | | | Cell-Nonmotile
Colonial-Nonmotile | Cells/ml
Cells/ml | 47.1329
47.1329 | 0.00291986 | 47.1329
94.2658 | 0.0024 | | unty Boundary 7/12/2 | | | Chlorophyta
Bacillariophyta | Chlorophyceae
Bacillariophyceae | Bacillarales | Oocystaceae
Bacillariaceae | Quadrigula
Nitrechia | | | | Colonial-Nonmotile | Cells/ml | 282.7975 | 0.00291986 | 282.7975 | 0.0048 | | unty Boundary 7/12/2 | | | Bacillariophyta
Bacillariophyta | Fragilariophyceae | Fragilariales | Bacillariaceae
Fragilariaceae | Nitzschia
Fragilaria | acicularis
construens | | | Lateral-Filament | Cells/ml | 47.1329 | 0.00291986 | 94.2658 | 0.0048 | | unty Boundary 7/12/2 | | | Bacillariophyta | Bacillariophyceae | Naviculales | Naviculaceae | Navicula | cryptocephala | | | Cell-Motile | Cells/ml | 94.2658 | 0.00291900 | 94.2658 | 0.0048 | | unty Boundary 7/12/2 | | 6033 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 2 | | | Cell-Motile | Cells/ml | 47.1329 | 0.00383972 | 47.1329 | 0.0024 | | unty Boundary 7/12/2 | | 102793 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | acutus | | | Colonial-Nonmotile | Cells/ml | 47.1329 | 0.00291986 | 188.5317 | 0.0024 | | unty Boundary 7/25/2 | | | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 3.3629 | 0.00291988 | 6.7259 | 0.0006 | | unty Boundary 7/25/2 | | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 22.6998 | 0.00030229 | 22.6998 | 0.002 | | unty Boundary 7/25/2 | | 8030 | Chlorophyta | Chlorophyceae | Microsporales | Microsporaceae | Microspora | 0.000 | | | Filament | Cells/ml | 5.8851 | 0.00063401 | 17.6554 | 0.0017 | | unty Boundary 7/25/2 | | 2211 | Chlorophyta | Chlorophyceae | Chlorococcales | Dictyosphaeriaceae | Dictyosphaerium | pulchellum | | | Colonial-Nonmotile | Cells/ml | 5.0444 | 0.00054344 | 62.2142 | 0.0060 | | Table B-5. Continue | ed. | | | | | | | | | | | I | | | | In-letin deal |
--|--|----------------------|------------------------------------|--|----------------------------------|--------------------------------------|------------------------------|--------------------------------|----------------|--------------------|--------------------------------------|-----------------------|-----------------------|------------------------|-----------------------|--------------------------| | | Sample | Taxa | | | | | | | | | | Customer
requested | | Relative | Algal cell | Relative algal
cell | | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | concentration | | | Little Hole Draw | 7/25/2001 | 1000049 | Chlorophyta | Chlorophyceae | Bryopsidales | Dichotomosiphonaceae | Dichotomococcus | curvatus | | | Colonial-Nonmotile | Cells/ml | 16.9679 | 0.00276216 | 67.8714 | 0.00872858 | | Little Hole Draw | 7/25/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 339.3571 | 0.05524314 | 339.3571 | 0.04364291 | | Little Hole Draw | 7/25/2001 | 9123 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | | | Cell-Motile | Cells/ml | 101.8071 | 0.01657294 | 101.8071 | 0.01309287 | | Little Hole Draw | 7/25/2001 | 2911 | Chlorophyta | Chlorophyceae | Ulotrichales | Ulotrichaceae | Stichococcus | bacillaris | | | Colonial-Nonmotile | Cells/ml | 169.6785 | 0.02762156 | 169.6785 | 0.02182145 | | Little Hole Draw | 7/25/2001
7/25/2001 | 9504 | Chlorophyta
Bacillariophyta | Chlorophyceae
Fragilariophyceae | Chlorococcales
Fragilariales | Oocystaceae
Fragilariaceae | Monoraphidium
Synedra | capricomutum
tenera | | | Cell-Nonmotile
Cell-Nonmotile | Cells/ml | 33.9357
50.9036 | 0.00552431 | 33.9357
50.9036 | 0.00436429 | | Little Hole Draw | 7/25/2001 | 1296 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 296.9374 | 0.04833774 | 296.9374 | 0.03818754 | | | 7/25/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 67.8714 | 0.01104863 | 67.8714 | 0.00872858 | | Little Hole Draw | 7/25/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | | globosa | | | Cell-Motile | Cells/ml | 33.9357 | 0.00552431 | 33.9357 | 0.00436429 | | | 7/25/2001 | 1222 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | gracilis | | | Cell-Motile | Cells/ml | 16.9679 | 0.00276216 | 16.9679 | 0.00218215 | | | 7/25/2001 | 4054 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Aphanocapsa | delicatissima | | | Colonial-Nonmotile | Cells/ml | 16.9679 | 0.00276216 | 509.0356 | 0.06546436 | | | 7/25/2001 | 1221 | Chlorophyta | Chlorophyceae | Chlorococcales | Bacillariaceae | Nitzschia | acicularis | | | Cell-Motile
Colonial-Nonmotile | Cells/ml
Cells/ml | 16.9679
16.9679 | 0.00276216 | 16.9679 | 0.00218215 | | Little Hole Draw | 7/25/2001
7/25/2001 | 8308
2491 | Chlorophyta
Chlorophyta | Chlorophyceae
Chlorophyceae | Chlorococcales
Chlorococcales | Scenedesmaceae
Chlorococcaceae | Scenedesmus
Schroederia | serratus
iudavi | | | Cell-Nonmotile | Cells/ml | 16.9679 | 0.00276216 | 33.9357
16.9679 | 0.00436429 | | Little Hole Draw | 7/25/2001 | 4264 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | aeruginosa | | | Colonial-Nonmotile | Cells/ml | 0 | 0.00270210 | 33.9357 | 0.00436429 | | Little Hole Draw | 7/25/2001 | 2884 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | quadricauda | | | Colonial-Nonmotile | Cells/ml | 33.9357 | 0.00552431 | 67.8714 | 0.00872858 | | Little Hole Draw | 7/25/2001 | 2031 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Ankistrodesmus | falcatus | | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.00552431 | 33.9357 | 0.00436429 | | | 8/2/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 1025.6965 | 0.83443655 | 37215.1412 | 0.98390436 | | Little Hole Draw | 8/2/2001 | 6011 | Pyrrhophyta | Dinophyceae | Gonyaulacales | Certiaceae | Ceratium | hirundinella | | | Cell-Motile | Cells/ml | 2.8024 | 0.00227984 | 2.8024 | 0.00007409 | | Little Hole Draw | 8/2/2001 | 2381
3015 | Chlorophyta | Chilorophyceae | Chlorococcales | Hydrodictyaceae
Cryptomonadaceae | Pediastrum | orcea | | | Colonial-Nonmotile
Cell-Motile | Cells/ml | 2.8024
5.6049 | 0.00227984 | 168.147
5.6049 | 0.00444552 | | Little Hole Draw
Little Hole Draw | 8/2/2001
8/2/2001 | 4261 | Cryptophyta
Cyanophyta | Cryptophyceae
Cyanophyceae | Cryptomonadales
Chroococcales | Cryptomonadaceae
Chroococcaceae | Cryptomonas
Microcystis | erosa
aeruginosa | | | Colonial-Nonmotile | Cells/ml
Cells/ml | 0.0049 | 0.00455976 | 228.632 | 0.00604464 | | Little Hole Draw | 8/2/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | microcysus | uerugiii05a | | >1 um spherical | Cell-Nonmotile | Cells/ml | 45.2476 | 0.03681035 | 45.2476 | 0.00004464 | | Little Hole Draw | 8/2/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | . a aprioriodi | Cell-Motile | Cells/ml | 90.4952 | 0.07362071 | 90.4952 | 0.00239254 | | Little Hole Draw | 8/2/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 45.2476 | 0.03681035 | 45.2476 | 0.00119627 | | Little Hole Draw | 8/2/2001 | 4092 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Coelosphaerium | naegelianum | | | Colonial-Nonmotile | Cells/ml | 0 | 0 | 11.3119 | 0.00029907 | | Little Hole Draw | 8/2/2001 | 7140 | Miscellaneous | | | | | | | Microflagellate | Cell-Motile | Cells/ml | 11.3119 | 0.00920259 | 11.3119 | 0.00029907 | | Little Hole Draw | 8/8/2001 | 2884 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | quadricauda | | | Colonial-Nonmotile | Cells/ml | 4.6707 | 0.0014936 | 18.683 | 0.00018945 | | Little Hole Draw | 8/8/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 2522.2045 | 0.80655417 | 97219.3822 | 0.98584874 | | Little Hole Draw
Little Hole Draw | 8/8/2001
8/8/2001 | 4261
8101 | Cyanophyta
Chlorophyta | Cyanophyceae
Chlorophyceae | Chroococcales
Volvocales | Chroococcaceae
Chlamydomonadaceae | Microcystis
Pyramichlamys | aeruginosa
dissecta | | | Colonial-Nonmotile
Cell-Motile | Cells/ml | 4.6707 | 0.0014936 | 776.5815
4.6707 | 0.00787489 | | Little Hole Draw | 8/8/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 509.0356 | 0.16278013 | 509.0356 | 0.00516185 | | Little Hole Draw | 8/8/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | Паннориансиса | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.01085201 | 33.9357 | 0.00034412 | | Little Hole Draw | 8/8/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.01085201 | 33.9357 | 0.00034412 | | Little Hole Draw | 8/8/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 18.683 | 0.00597448 | 18.683 | 0.00018945 | | County Boundary | 6/6/2001 | 3069 | Cryptophyta | Cryptophyceae |
Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 19.7272 | 0.08445474 | 19.7272 | 0.00542951 | | County Boundary | 6/6/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 3.9454 | 0.01689078 | 3.9454 | 0.00108589 | | | 6/6/2001 | 2160
2462 | Chlorophyta | Chlorophyceae | Zygnematales
Chlorococcales | Desmidiaceae | Closterium
Quadrigula | lacustris | | | Cell-Nonmotile
Colonial-Nonmotile | Cells/ml
Cells/ml | 8.6811
0.6576 | 0.03716493 | 8.6811
0.6576 | 0.00238929 | | | 6/6/2001 | 101930 | Chlorophyta
Chlorophyta | Chlorophyceae
Chlorophyceae | Ulotrichles | Oocystaceae
Ulotrichaceae | Geminella | interrupta | | | Filament | Cells/ml | 92.0605 | 0.39412312 | 2852.7789 | 0.78516866 | | | 6/6/2001 | 10220 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | | Complex-Filament | Cells/ml | 15.7818 | 0.06756396 | 508.1738 | 0.13986438 | | | 6/6/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 0.6576 | 0.00281527 | 0.6576 | 0.00018099 | | | 6/6/2001 | 1439 | Bacillariophyta | Coscinodiscophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | canadensis | | | Filament | Cells/ml | 0.6576 | 0.00281527 | 0.6576 | 0.00018099 | | | 6/6/2001 | 2382 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | boryanum | | | Colonial-Nonmotile | Cells/ml | 0.6576 | 0.00281527 | 10.5212 | 0.00289574 | | | 6/6/2001 | | Bacillariophyta | Bacillariophyceae | Cymbellales | Cymbellaceae | Cymbella | | | | Cell-Nonmotile | Cells/ml | 1.3151 | 0.00563012 | 1.3151 | 0.00036195 | | | 6/6/2001 | 4290 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Nostoc | tononio | | | Colonial-Nonmotile | Cells/ml | 0.6576 | 0.00281527 | 131.515 | 0.0361968 | | County Boundary County Boundary | 6/6/2001 | 1152
9212 | Bacillariophyta
Bacillariophyta | Fragilariophyceae
Bacillariophyceae | Fragilariales
Achnanthales | Fragilariaceae
Cocconiedaceae | Fragilaria
Cocconeis | crotonensis
placentula | lineata | | Lateral-Filament
Cell-Nonmotile | Cells/ml
Cells/ml | 0.6576
1.3151 | 0.00281527 | 6.5757
1.3151 | 0.00180983 | | | 6/6/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Coccolleis | pracentula | miesta | >1 um spherical | Cell-Nonmotile | Cells/ml | 52.0868 | 0.22299045 | 52.0868 | 0.01433582 | | | 6/6/2001 | 1221 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | acicularis | | . a opriorioui | Cell-Motile | Cells/ml | 8.6811 | 0.03716493 | 8.6811 | 0.00238929 | | County Boundary | 6/6/2001 | 1222 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | gracilis | | | Cell-Motile | Cells/ml | 8.6811 | 0.03716493 | 8.6811 | 0.00238929 | | | 6/6/2001 | 9123 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | | | Cell-Motile | Cells/ml | 17.3623 | 0.07433029 | 17.3623 | 0.00477862 | | | 6/20/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 208.3474 | 0.0110896 | 208.3474 | 0.01048764 | | County Boundary | 6/20/2001 | 3043
2683 | Chlorophyta | Chlorophyceae | Chlorococcalos | Chlorococcae | Rhodomonas | minuta | nannoplanctica | 2.00 um anhad | Cell-Motile | Cells/ml | 1823.0395
208.3474 | 0.09703402 | 1823.0395
208.3474 | 0.09176685 | | | 6/20/2001
6/20/2001 | 1731 | Chlorophyta
Chrysophyta | Chlorophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subapquicilists | | 2-9.9 um spherical | Cell-Nonmotile
Cell-Motile | Cells/ml
Cells/ml | 208.3474
833.3895 | 0.0110896 | 208.3474
833.3895 | 0.01048764 | | | 6/20/2001 | 2085 | Chlorophyta | Chrysophyceae
Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | subaequiciliata
platystigma | | | Cell-Motile | Cells/ml | 312.5211 | 0.04433641 | 312.5211 | 0.04193036 | | | 6/20/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Sinoniyaomonas | procysugina | | >1 um spherical | Cell-Nonmotile | Cells/ml | 9766.2829 | 0.51982511 | 9766.2829 | 0.49160813 | | County Boundary | | | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 3958.6 | 0.21070245 | 3958.6 | 0.19926516 | | | 6/20/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 104.1737 | 0.0055448 | 104.1737 | 0.00524382 | | County Boundary | 6/20/2001 | 8041 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Monoraphidium | capricomutum | | | Cell-Nonmotile | Cells/ml | 52.0868 | 0.0027724 | 52.0868 | 0.00262191 | | | 6/20/2001 | 1446 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 729.2158 | 0.03881361 | 729.2158 | 0.03670674 | | County Boundary (| 6/20/2001 | 1152 | Bacillariophyta
Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae
Stophanadiaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 156.2605 | 0.0083172 | 989.6448 | 0.04981603 | | | 6/20/2001 | 1296
9123 | Bacillariophyta
Bacillariophyta | Coscinodiscophyceae
Bacillariophyceae | Thalassiosirales
Bacillarales | Stephanodiscaceae
Bacillariaceae | Stephanodiscus
Nitzschia | hantzschii
palea | | | Cell-Nonmotile
Cell-Motile | Cells/ml
Cells/ml | 104.1737 | 0.0055448 | 104.1737
104.1737 | 0.00524382 | | | 6/20/2001 | | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | acicularis | | | Cell-Motile | Cells/ml | 52.0868 | 0.0055448 | 52.0868 | 0.00524362 | | | 0-2012001 | 6034 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 52.0868 | 0.0027724 | 52.0868 | 0.00262191 | | County Boundary | 6/20/2001 | | | | - 7111114-0111404 | | | | | | | | | | | 0.00262191 | | County Boundary County Boundary | 6/20/2001 | | | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | capucina | | | Lateral-Filament | Cells/ml | 52.0868 | 0.0027724 | 52.0868 | | | County Boundary County Boundary | 6/20/2001 | 1153 | Bacillariophyta
Bacillariophyta | Fragilariophyceae
Bacillariophyceae | Fragilariales
Cymbellales | Fragilariaceae
Gomphonemataceae | Fragilaria
Gomphonema | capucina
parvulum | | | Cell-Nonmotile | Cells/ml | 52.0868 | 0.0027724 | 52.0868
52.0868 | 0.00262191 | | County Boundary Bound | 6/20/2001
6/20/2001
6/20/2001 | 1153
1161
1411 | Bacillariophyta | Fragilariophyceae | Cymbellales
Ochromonadales | | | | | | Cell-Nonmotile
Colonial-Motile | Cells/ml
Cells/ml | 52.0868
52.0868 | 0.0027724
0.0027724 | 52.0868
104.1737 | 0.00262191
0.00524382 | | County Boundary Bound | 6/20/2001
6/20/2001
6/20/2001
6/20/2001 | 1153
1161 | Bacillariophyta
Bacillariophyta | Fragilariophyceae
Bacillariophyceae | Cymbellales | Gomphonemataceae | Gomphonema | parvulum | | | Cell-Nonmotile | Cells/ml | 52.0868 | 0.0027724 | 52.0868 | 0.00262191 | | | | | | | | | | | | | | Customer | | | | Relative algo | |-----------------|-----------|----------------|-----------------|---------------------|--------------------|--------------------|------------------|-------------------|-----------------------|--------------------|--------------------|-----------|---------------|---------------|---------------|---------------| | | Sample | Taxa | | | | | | | | | | requested | | Relative | Algal cell | cell | | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | concentration | | | ittle Hole Draw | 7/3/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | 10.1019 | morph | Colonial-Nonmotile | Cells/ml | 1.4012 | 0.00075926 | 5.6049 | 0.0016852 | | ittle Hole Draw | 7/3/2001 | 1021 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 2.8024 | 0.00073320 | 20.3178 | 0.0061091 | | ittle Hole Draw | 7/3/2001 | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | TOTTIOSA | | | Colonial-Nonmotile | Cells/ml | 2.8024 | 0.00151851 | 141.9909 | 0.0426937 | | ittle Hole Draw | 7/3/2001 | 2371 | Chlorophyta | Chlorophyceae | Volvocales | Volvocaceae | Pandorina | morum | | | Colonial-Motile | Cells/ml | 0.7006 | 0.00037963 | 5.6049 | 0.0016852 | | ittle Hole Draw | | 2462 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Quadrigula | lacustris | | | Colonial-Nonmotile | Cells/ml | 0.7006 | 0.00037963 | 2.8024 | 0.0008426 | | ittle Hole Draw | 7/3/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 0.7006 | 0.00037963 | 7.6431 | 0.0022981 | | ittle Hole Draw | 7/3/2001 | 2021 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Actinastrum | hantzschii | | | Cell-Nonmotile | Cells/ml | 1.4012 | 0.00075926 | 7.0061 | 0.0021065 | | ittle Hole Draw | 7/3/2001 | 9504 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | tenera | | | Cell-Nonmotile | Cells/ml | 0.7006 | 0.00037963 | 0.7006 | 0.0002106 | | ittle Hole Draw | 7/3/2001 | 1328 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | cyclopum | | | Cell-Nonmotile | Cells/ml | 0.7006 | 0.00037963 | 0.7006 | 0.0002106 | | ittle Hole Draw | 7/3/2001 | 2382 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | boryanum | | | Colonial-Nonmotile | Cells/ml | 0.7006 | 0.00037963 | 11.2098
| 0.0033705 | | ttle Hole Draw | 7/3/2001 | 9818 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | medius | | | Cell-Nonmotile | Cells/ml | 0.7006 | 0.00037963 | 0.7006 | 0.0002106 | | ttle Hole Draw | 7/3/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 984.1354 | 0.53326492 | 984.1354 | 0.2959090 | | ttle Hole Draw | 7/3/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | 11110 0011101100 | 11111000 | That it is prairie to | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 305.4213 | 0.16549599 | 305.4213 | 0.0918338 | | ttle Hole Draw | 7/3/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | 2-0.0 din opnonedi | Cell-Nonmotile | Cells/ml | 33.9357 | 0.01838844 | 33.9357 | 0.0102037 | | ittle Hole Draw | 7/3/2001 | 7140 | Miscellaneous | | 111010001101101101 | 01001101101010101 | 010 11011001000 | po-100 | | Microflagellate | Cell-Motile | Cells/ml | 33.9357 | 0.01838844 | 33.9357 | 0.0102037 | | ttle Hole Draw | 7/3/2001 | 9123 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | | | Cell-Motile | Cells/ml | 16.9679 | 0.00919425 | 16.9679 | 0.0051018 | | ttle Hole Draw | 7/3/2001 | 1731 | Chrysophyta | Chrysophyceae | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 33.9357 | 0.01838844 | 33.9357 | 0.0102037 | | ttle Hole Draw | 7/3/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.03677689 | 67.8714 | 0.0204075 | | ttle Hole Draw | 7/3/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.03677689 | 67.8714 | 0.0204075 | | ttle Hole Draw | 7/3/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | | globosa | | | Cell-Motile | Cells/ml | 16.9679 | 0.00919425 | 16.9679 | 0.0051018 | | | 7/12/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 178.6562 | 0.18020501 | 5705.3307 | 0.7660928 | | ttle Hole Draw | | 1434 | Bacillariophyta | Coscinodiscophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 4.2037 | 0.00424014 | 9.8084 | 0.0013170 | | tle Hole Draw | | 8303 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | opoliensis | carinatus | | Colonial-Nonmotile | Cells/ml | 0.7006 | 0.00070667 | 2.8024 | 0.000376 | | ttle Hole Draw | 7/12/2001 | 2491 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | judayi | 10 | | Cell-Nonmotile | Cells/ml | 4.9043 | 0.00494682 | 4.9043 | 0.0006585 | | | | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 1.4012 | 0.00141335 | 1.4012 | 0.0001881 | | tle Hole Draw | 7/12/2001 | 9123 | Bacillariophyta | Bacillariophyceae | Bacillarales | Bacillariaceae | Nitzschia | palea | | | Cell-Motile | Cells/ml | 1.4012 | 0.00141335 | 1.4012 | 0.0001881 | | ttle Hole Draw | 7/12/2001 | 2071 | Chlorophyta | Chlorophyceae | Chlorococcales | Characiaceae | Characium | limneticum | | | Cell-Nonmotile | Cells/ml | 0.7006 | 0.00070667 | 0.7006 | 0.0000940 | | ttle Hole Draw | 7/12/2001 | 9818 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | medius | | | Cell-Nonmotile | Cells/ml | 0.7006 | 0.00070667 | 0.7006 | 0.0000940 | | tle Hole Draw | | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 2.8024 | 0.00282669 | 2.8024 | 0.000376 | | tle Hole Draw | 7/12/2001 | 1021 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 0.7006 | 0.00070667 | 0.7006 | 0.0000940 | | ttle Hole Draw | | 8030 | Chlorophyta | Chlorophyceae | Microsporales | Microsporaceae | Microspora | | | | Filament | Cells/ml | 1.4012 | 0.00141335 | 1.4012 | 0.0001881 | | | | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | | | | Colonial-Nonmotile | Cells/ml | 1.4012 | 0.00141335 | 33.6294 | 0.0045156 | | ttle Hole Draw | 7/12/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 5.6049 | 0.00565349 | 5.6049 | 0.0007526 | | tle Hole Draw | 7/12/2001 | 2369 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | lacustris | | | Colonial-Nonmotile | Cells/ml | 0.7006 | 0.00070667 | 0.7006 | 0.0000940 | | ttle Hole Draw | 7/12/2001 | 4172 | Cyanophyta | Cyanophyceae | Oscillatoriales | Oscillatoriaceae | Oscillatoria | limnetica | | | Filament | Cells/ml | 1.4012 | 0.00141335 | 15.2861 | 0.0020525 | | ttle Hole Draw | 7/12/2001 | 2382 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | boryanum | | | Colonial-Nonmotile | Cells/ml | 2.1018 | 0.00212002 | 49.0428 | 0.0065853 | | ttle Hole Draw | 7/12/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 1.4012 | 0.00141335 | 2.8024 | 0.000376 | | | 7/12/2001 | 4261 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Microcystis | aeruginosa | | | Colonial-Nonmotile | Cells/ml | 0 | 0 | 313.128 | 0.0420457 | | ttle Hole Draw | | 2371 | Chlorophyta | Chlorophyceae | Volvocales | Volvocaceae | Pandorina | morum | | | Colonial-Motile | Cells/ml | 0.7006 | 0.00070667 | 5.6049 | 0.0007526 | | ttle Hole Draw | | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 407.2285 | 0.41075885 | 407.2285 | 0.0546812 | | ttle Hole Draw | | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 101.8071 | 0.10268969 | 101.8071 | 0.0136703 | | ttle Hole Draw | 7/12/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.0342299 | 33.9357 | 0.0045567 | | ttle Hole Draw | 7/12/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | | | | >1 um spherical | Cell-Nonmotile | Cells/ml | 67.8714 | 0.06845979 | 67.8714 | 0.0091135 | | ttle Hole Draw | 7/12/2001 | 2861 | Chlorophyta | Prasinophyceae | Prasinocladales | Pedinomonadaceae | Monomastix | astigmata | | | Cell-Motile | Cells/ml | 135.7428 | 0.13691958 | 135.7428 | 0.0182270 | | ttle Hole Draw | 7/12/2001 | 10220 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | | Complex-Filament | Cells/ml | 33.9357 | 0.0342299 | 542.9713 | 0.0729083 | | ttle Hole Draw | 7/25/2001 | 1434 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 18.4962 | 0.00301095 | 136.0781 | 0.0175002 | | ttle Hole Draw | 7/25/2001 | 1432 | Bacillariophyta | | Aulacoseirales | Aulacoseriaceae | Aulacoseira | granulata | | | Filament | Cells/ml | 18.4962 | 0.00301095 | 162.3557 | 0.020879 | | ttle Hole Draw | 7/25/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 1.2611 | 0.00020529 | 1.2611 | 0.0001621 | | ttle Hole Draw | 7/25/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 9.6685 | 0.00157391 | 508.6195 | 0.0654108 | | tle Hole Draw | 7/25/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 23.9609 | 0.00390054 | 23.9609 | 0.0030814 | | tle Hole Draw | 7/25/2001 | 1021 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | 0.8407 | 0.00013686 | 3.3629 | 0.0004324 | | tle Hole Draw | 7/25/2001 | 9818 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | medius | | | Cell-Nonmotile | Cells/ml | 6.3055 | 0.00102646 | 6.3055 | 0.0008109 | | ttle Hole Draw | 7/25/2001 | 2211 | Chlorophyta | Chlorophyceae | Chlorococcales | Dictyosphaeriaceae | Dictyosphaerium | pulchellum | | | Colonial-Nonmotile | Cells/ml | 1.6815 | 0.00027373 | 14.5728 | 0.001874 | | tle Hole Draw | 7/25/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 0.8407 | 0.00013686 | 6.7259 | 0.0008649 | | tle Hole Draw | 7/25/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | | dissecta | | | Cell-Motile | Cells/ml | 27.7442 | 0.00451641 | 27.7442 | 0.0035680 | | tle Hole Draw | | 2194 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Crucigenia | crucifera | | | Colonial-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 2.9426 | 0.0003784 | | tle Hole Draw | 7/25/2001 | 3065 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | gracilis | | | Cell-Motile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.0000540 | | tle Hole Draw | 7/25/2001 | 2371 | Chlorophyta | Chlorophyceae | Volvocales | Volvocaceae | Pandorina | morum | | | Colonial-Motile | Cells/ml | 0.8407 | 0.00013686 | 13.4518 | 0.0017299 | | tle Hole Draw | 7/25/2001 | 8011 | Chlorophyta | Chlorophyceae | Chlorococcales | Actinodiscaceae | Deasonia | Gigantica | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.0000540 | | tle Hole Draw | 7/25/2001 | 4168 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Merismopedia | punctata | |
 Colonial-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 3.3629 | 0.0004324 | | tle Hole Draw | 7/25/2001 | 9317 | Bacillariophyta | Bacillariophyceae | Surirellales | Surirellaceae | Surirella | brebissonii | kuetzingii | | Cell-Motile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.0000540 | | tle Hole Draw | 7/25/2001 | 2021 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Actinastrum | hantzschii | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 1.6815 | 0.000216 | | tle Hole Draw | 7/25/2001 | 2381 | Chlorophyta | Chlorophyceae | Chlorococcales | Hydrodictyaceae | Pediastrum | | | | Colonial-Nonmotile | Cells/ml | 2.5222 | 0.00041058 | 90.7994 | 0.011677 | | tle Hole Draw | 7/25/2001 | 9506 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | ulna | ulna | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.000054 | | tle Hole Draw | 7/25/2001 | 6033 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 2 | | | Cell-Motile | Cells/ml | 0.8407 | 0.00013686 | 0.8407 | 0.000108 | | tle Hole Draw | 7/25/2001 | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 1.2611 | 0.00020529 | 15.1332 | 0.001946 | | ttle Hole Draw | | 5021 | Euglenophyta | Euglenophyceae | Euglenales | Euglenaceae | Euglena | gracilis | | | Cell-Motile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.000054 | | ttle Hole Draw | 7/25/2001 | 6034 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 0.8407 | 0.00013686 | 0.8407 | 0.000108 | | ttle Hole Draw | 7/25/2001 | 2567 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Tetraedron | regulare | incus | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00006844 | 0.4204 | 0.000054 | | ttle Hole Draw | 7/25/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 356.3249 | 0.05800529 | 356.3249 | 0.0458250 | | tle Hole Draw | 7/25/2001 | 2561 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Tetrastrum | staurogeniaeforme | | | Colonial-Nonmotile | Cells/ml | 33.9357 | 0.00552431 | 135.7428 | 0.0174571 | | | | 1298 | | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 3139.0527 | 0.51099899 | 3139.0527 | 0.4036968 | | | 7/25/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | .,, | F | | 2-9.9 um spherical | | Cells/ml | | 0.20025636 | | | | | | | | | | | | | | | | Customer | | | | Relative alg | |------------------------------------|-----------|----------------|--------------------------------|--------------------------------|-----------------------------------|-------------------------------------|----------------------------|----------------------------------|----------------|---------------------------------------|-------------------------------|----------------------|--------------------|---------------|--------------------|--------------| | | Sample | Taxa | | | | | | | | | | requested | | Relative | Algal cell | cell | | Site | date | identification | Division | Class | Order | Family | Genus | Species | Variety | Morph | Coloniality | units | Concentration | concentration | concentration | concentrati | | Dam | 8/8/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 0.8407 | 0.0014805 | 0.8407 | 0.0002798 | | Dam | 8/8/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 0.4204 | 0.00074034 | 1.6815 | 0.0005597 | | Dam | 8/8/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 0.4204 | 0.00074034 | 0.4204 | 0.0001399 | | Dam | 8/8/2001 | 2211 | Chlorophyta | Chlorophyceae | Chlorococcales | Dictyosphaeriaceae | Dictyosphaerium | pulchellum | | | Colonial-Nonmotile | Cells/ml | 0.8407 | 0.0014805 | 3.3629 | 0.0011194 | | Dam | 8/8/2001 | 2884 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | quadricauda | | | Colonial-Nonmotile | Cells/ml | 0.4204 | 0.00074034 | 0.8407 | 0.0002798 | | Dam | 8/8/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 0.4204 | 0.00074034 | 0.4204 | 0.0001399 | | Dam | 8/8/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 0.4204 | 0.00074034 | 0.4204 | 0.0001399 | | Dam | 8/8/2001 | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 254.5178 | 0.44821458 | 254.5178 | 0.0847242 | | Dam | 8/8/2001 | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | | | | >1 um spherical | Cell-Nonmotile | Cells/ml | 67.8714 | 0.11952387 | 67.8714 | 0.0225931 | | Dam | 8/8/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 16.9679 | 0.02988105 | 16.9679 | 0.005648 | | Dam | 8/8/2001 | 2683 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | | | | 2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 33.9357 | 0.05976193 | 33.9357 | 0.0112965 | | Dam | 8/8/2001 | 1298 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 67.8714 | 0.11952387 | 67.8714 | 0.0225931 | | Dam | 8/8/2001 | 8308 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Scenedesmus | serratus | | | Colonial-Nonmotile | Cells/ml | 16.9679 | 0.02988105 | 33.9357 | 0.0112965 | | Dam | 8/8/2001 | 2492 | Chlorophyta | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 0.4204 | 0.00074034 | 0.4204 | 0.0001399 | | Fenstermaker | 8/8/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 155.5359 | 0.03362825 | 155.5359 | 0.011383 | | Fenstermaker | 8/8/2001 | 8101 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Pyramichlamys | dissecta | | | Cell-Motile | Cells/ml | 28.0245 | 0.00605915 | 28.0245 | 0.002051 | | Fenstermaker | 8/8/2001 | 2363 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | parva | | | Colonial-Nonmotile | Cells/ml | 19.6171 | 0.00424139 | 106.4936 | 0.007794 | | Fenstermaker | 8/8/2001 | 4041 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Aphanizomenon | flos-aquae | | | Multi-Filament | Cells/ml | 281.6462 | 0.06089443 | 8551.8199 | 0.625915 | | Fenstermaker | 8/8/2001 | 1432 | Bacillariophyta | Coscinodiscophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | granulata | | | Filament | Cells/ml | 71.4625 | 0.01545083 | 365.2518 | 0.026733 | | Fenstermaker | 8/8/2001 | 2211 | Chlorophyta | Chlorophyceae | Chlorococcales | Dictyosphaeriaceae | Dictyosphaerium | pulchellum | | | Colonial-Nonmotile | Cells/ml | 11.2098 | 0.00242366 | 89.6784 | 0.0065636 | | Fenstermaker | 8/8/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | Cell-Motile | Cells/ml | 7.0061 | 0.00151478 | 7.0061 | 0.000512 | | Fenstermaker | 8/8/2001 | 6034 | Pyrrhophyta | Dinophyceae | Gymnodinales | Gymnodiniaceae | Gymnodinium | sp. 3 | | | Cell-Motile | Cells/ml | 4.2037 | 0.00090888 | 4.2037 | 0.000307 | | Fenstermaker | 8/8/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 5.6049 | 0.00121183 | 5.6049 | 0.000410 | | Fenstermaker | 8/8/2001 | 9504 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | tenera | | | Cell-Nonmotile | Cells/ml | 2.8024 | 0.0006059 | 2.8024 | 0.000205 | | Fenstermaker | 8/8/2001 | 9506 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | ulna | ulna | | Cell-Nonmotile | Cells/ml | 2.8024 | 0.0006059 | 2.8024 | 0.000205 | | Fenstermaker | 8/8/2001 | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 7.0061 | 0.00151478 | 42.0367 | 0.003076 | | Fenstermaker | 8/8/2001 | 4052 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | Aphanocapsa | koordersi | | | Colonial-Nonmotile | Cells/ml | 1.4012 | 0.00030295 | 42.0367 | 0.003076 | | Fenstermaker | 8/8/2001 | 2331 | Chlorophyta | Chlorophyceae | Chlorococcales | Micractinaceae | Micractinium | pusillum | | | Colonial-Nonmotile | Cells/ml | 7.0061 | 0.00151478 | 63.0551 | 0.0046150 | | Fenstermaker | 8/8/2001 | 2021 | Chlorophyta | Chlorophyceae | Chlorococcales | Scenedesmaceae | Actinastrum | hantzschii | | | Cell-Nonmotile | Cells/ml | 5.6049 | 0.00121183 | 39.2343 | 0.0028719 | | Fenstermaker | 8/8/2001 | 1180 | Chrysophyta | Chrysophyceae | Ochromonadales | Synuraceae | Mallomonas | Trainazo er m | | | Cell-Motile | Cells/ml | 5.6049 | 0.00121183 | 5.6049 | 0.000410 | | Fenstermaker | 8/8/2001 | 1430 | Bacillariophyta | Coscinodiscophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | | | | Filament | Cells/ml | 1.4012 | 0.00030295 | 8.7577 | 0.0006409 | | Fenstermaker | 8/8/2001 | 2085 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 2.8024 | 0.0006059 | 2.8024 | 0.0002051 | | Fenstermaker | 8/8/2001 | 1298 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile | Cells/ml | 2070.078 | 0.4475694 | 2070.078 | 0.151510 | | Fenstermaker | 8/8/2001 | 3043
| Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 916.264 | 0.19810448 | 916.264 | 0.0670621 | | Fenstermaker | 8/8/2001 | 8041 | Chlorophyta | Chlorophyceae | Chlorococcales | Occvstaceae | Monoraphidium | capricomutum | паннориневса | | Cell-Nonmotile | Cells/ml | 33.9357 | 0.0073372 | 33.9357 | 0.0024837 | | Fenstermaker | 8/8/2001 | 1222 | Bacillariophyta | | Bacillarales | Bacillariaceae | Nitzschia | gracilis | | | Cell-Motile | Cells/ml | 33.9357 | 0.0073372 | 33.9357 | 0.0024837 | | Fenstermaker | 8/8/2001 | 1296 | Bacillariophyta | | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 203.6142 | 0.0073372 | 203.6142 | 0.014902 | | Fenstermaker | 8/8/2001 | 9123 | | | Bacillarales | Bacillariaceae | Nitzschia | | | | Cell-Motile | Cells/ml | 33 9357 | 0.0073372 | 33.9357 | 0.002483 | | Fenstermaker | 8/8/2001 | 2561 | Bacillariophyta
Chlorophyta | Bacillariophyceae | Chlorococcales | | Tetrastrum | palea | | | Colonial-Nonmotile | Cells/ml | 33.9357 | 0.0073372 | 135.7428 | 0.002465 | | Fenstermaker | 8/8/2001 | 2884 | Chlorophyta | Chlorophyceae
Chlorophyceae | Chlorococcales | Scenedesmaceae
Scenedesmaceae | Scenedesmus | staurogeniaeforme
quadricauda | | | Colonial-Nonmotile | Cells/ml | 33.9357 | 0.0073372 | 67.8714 | 0.004967 | | Fenstermaker | 8/8/2001 | 1731 | Chrysophyta | | Ochromonadales | Ochromonadaceae | Erkenia | subaequiciliata | | | Cell-Motile | Cells/ml | 67.8714 | 0.0075372 | 67.8714 | 0.0049675 | | Fenstermaker | 8/8/2001 | 2911 | Chlorophyta | Chrysophyceae
Chlorophyceae | Ulotrichales | Ulotrichaceae | Stichococcus | bacillaris | | | Colonial-Nonmotile | Cells/ml | 237.5499 | 0.05136042 | 237.5499 | 0.0043073 | | Fenstermaker | 8/8/2001 | 4285 | | | Chroococcales | | Sucriococcus | Dacilians | | >1 um enhorical | Cell-Nonmotile | Cells/ml | 101.8071 | 0.02201161 | 101.8071 | 0.0074513 | | Fenstermaker | 8/8/2001 | | Cyanophyta | Cyanophyceae | Chlorococcales | Chroococcaceae
Chlorococcaceae | | | | >1 um spherical
2-9.9 um spherical | Cell-Nonmotile | Cells/ml | 237.5499 | 0.05136042 | 237.5499 | 0.007431 | | | 6/20/2001 | 2683
3069 | Chlorophyta | Chlorophyceae | | | Cryptomonas | rostratiformis | | 2-9.9 um spriencar | Cell-Motile | Cells/ml | 87.6766 | 0.02275403 | 87.6766 | 0.0169274 | | | | | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | | | nannonlanetica | | | | | | | | | Little Hole Draw | | 3043 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Rhodomonas | minuta | nannoplanctica | | Cell-Motile | Cells/ml | 666.3424 | 0.17293067 | 666.3424 | 0.1286488 | | Little Hole Draw | 6/20/2001 | 3065
2491 | Cryptophyta | Chlorophyceae | Cryptomonadales
Chlorococcales | Cryptomonadaceae
Chlorococcaceae | Cryptomonas
Schroederia | gracilis | | | Cell-Motile
Cell-Nonmotile | Cells/ml
Cells/ml | 17.5353
29.2255 | 0.00758467 | 17.5353
29.2255 | 0.0033854 | | | 6/20/2001 | | Chlorophyta
Pacillariophyta | Chlorophyceae | | | | judayi | | | | | | | | | | ittle Hole Draw | | 1298
2085 | Bacillariophyta
Chlorophyta | Chlorophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | | | Cell-Nonmotile
Cell-Motile | Cells/ml
Cells/ml | 37.9932
70.1413 | 0.00986008 | 37.9932
70.1413 | 0.007335 | | ittle Hole Draw
ittle Hole Draw | 6/20/2001 | 6034 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | platystigma | | | Cell-Motile | Cells/ml | 2.9226 | 0.01820323 | 2.9226 | 0.000564 | | | 6/20/2001 | 10220 | Pyrrhophyta
Cyanophyta | Dinophyceae
Cyanophyceae | Gymnodinales
Nostocales | Gymnodiniaceae
Nostocaceae | Gymnodinium
Anabaena | sp. 3
augstumalis | | | Complex-Filament | Cells/ml | 52.606 | 0.00075848 | 1238.6341 | 0.000364 | | | | | | | | | | | | | Cell-Motile | Cells/ml | 14.6128 | 0.01365243 | 14.6128 | 0.239139 | | | 6/20/2001 | 2082 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Chlamydomonas | globosa | | | | | | | | | | ittle Hole Draw | | 2492 | Chlorophyta
Pacillarianh to | Chlorophyceae | Chlorococcales | Chlorococcaceae | Schroederia | setigera | | | Cell-Nonmotile | Cells/ml | 92.5988
5.8451 | 0.02403145 | 92.5988 | 0.017877 | | ittle Hole Draw | | 1021 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Asterionella | formosa | | | Colonial-Nonmotile | Cells/ml | | 0.00151693 | 61.3736 | 0.011849 | | ittle Hole Draw | | 101930 | Chlorophyta | Chlorophyceae | Ulotrichles | Ulotrichaceae | Geminella | interrupta | | | Filament | Cells/ml | 2.9226 | 0.00075848 | 87.6766 | 0.016927 | | ittle Hole Draw | 6/20/2001 | 1152 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 104.1737 | 0.02703539 | 104.1737 | 0.020112 | | ittle Hole Draw | 6/20/2001 | 1328 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Synedra | cyclopum | | | Cell-Nonmotile | Cells/ml | 8.7677 | 0.00227541 | 8.7677 | 0.001692 | | ittle Hole Draw | | 1153 | Bacillariophyta | Fragilariophyceae | Fragilariales | Fragilariaceae | Fragilaria | capucina | | | Lateral-Filament | Cells/ml | 2.9226 | 0.00075848 | 2.9226 | 0.000564 | | | 6/20/2001 | 1296 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | hantzschii | | | Cell-Nonmotile | Cells/ml | 8.7677 | 0.00227541 | 8.7677 | 0.001692 | | | 6/20/2001 | 2840 | Chlorophyta | Chlorophyceae | Volvocales | Chlamydomonadaceae | Lobomonas | | | | Cell-Motile | Cells/ml | 8.7677 | 0.00227541 | 8.7677 | 0.001692 | | ittle Hole Draw | | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 35.0707 | 0.00910163 | 35.0707 | 0.00677 | | ttle Hole Draw | | 4285 | Cyanophyta | Cyanophyceae | Chroococcales | Chroococcaceae | | | | >1 um spherical | Cell-Nonmotile | Cells/ml | 2534.893 | 0.65786109 | 2534.893 | 0.489404 | | | 6/20/2001 | 1446 | Bacillariophyta | Coscinodiscophyceae | Thalassiosirales | Stephanodiscaceae | Stephanodiscus | parvus | 1 | | Cell-Nonmotile | Cells/ml | 69.4491 | 0.01802359 | 69.4491 | 0.013408 | | ittle Hole Draw | 7/3/2001 | 1152 | Bacillariophyta | | Fragilariales | Fragilariaceae | Fragilaria | crotonensis | | | Lateral-Filament | Cells/ml | 18.2159 | 0.00987049 | 337.8234 | 0.101576 | | ittle Hole Draw | 7/3/2001 | 3015 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | erosa | | | Cell-Motile | Cells/ml | 96.6845 | 0.05238959 | 96.6845 | 0.029071 | | ittle Hole Draw | 7/3/2001 | 3069 | Cryptophyta | Cryptophyceae | Cryptomonadales | Cryptomonadaceae | Cryptomonas | rostratiformis | | | Cell-Motile | Cells/ml | 44.8392 | 0.02429663 | 44.8392 | 0.013482 | | ittle Hole Draw | 7/3/2001 | 2369 | Chlorophyta | Chlorophyceae | Chlorococcales | Oocystaceae | Oocystis | lacustris | | | Colonial-Nonmotile | Cells/ml | 2.1018 | 0.00113888 | 11.2097 | 0.003370 | | ittle Hole Draw | 7/3/2001 | 1434 | Bacillariophyta | Coscinodiscophyceae | Aulacoseirales | Aulacoseriaceae | Aulacoseira | italica | | | Filament | Cells/ml | 94.5827 | 0.05125071 | 650.2559 | 0.195518 | | ittle Hole Draw | 7/3/2001 | 8011 | Chlorophyta | Chlorophyceae | Chlorococcales | Actinodiscaceae | Deasonia | Gigantica | | | Cell-Nonmotile | Cells/ml | 2.1018 | 0.00113888 | 2.1018 | 0.000631 | | | | 10220 | Cyanophyta | Cyanophyceae | Nostocales | Nostocaceae | Anabaena | augstumalis | | | Complex-Filament | Cells/ml | 7.0061 | 0.00379633 | 386.738 | 0.1162840 | | | 7/3/2001 | | | | | | | | | | | | | | | | | ittle Hole Draw
ittle Hole Draw | 7/3/2001 | 2641 | Chlorophyta | Chlorophyceae | Tetrasporales | Palmellopsidaceae | Sphaerocystis | schroeteri | | | Colonial-Nonmotile | Cells/ml | 2.8024 | 0.00151851 | 28.0245 | 0.008426 | | Table B-6 | . DEQ ha | ourly samp | ling data in | <u>America</u> | n Falls | Reservoi | r near the | dam from | 4 pm, 18 J | uly, to 3 p | m, 19 J | uly, 2002 | . Temp = | temperatu | <u> re, Cond = </u> | conducti [,] | vity, DO | = dissol | red oxyge | n, Turb = t | urbidity. | | | | |-----------|----------|------------|--------------|----------------|---------|----------|------------|----------|------------|-------------|---------|-----------|----------|-----------|---------------------|-----------------------|----------|----------|-----------|---------------|------------|--------|------|-------| | Depth | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | | (meters) | (°C) | (uS/cm) | saturation | (mg/l) | pН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | pН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | pН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | рН | (NTU) | | (, | (-) | (| 1600 | 1 (**3*) | 1 | () | (-, | (| 1700 | (3) | - · · · | () | (-) | 1 () | 1800 | | 1 1 | () | (-, | (| 1900 | | 1 11 | () | | 0.3 | 24.13 | 465 | 107.5 | 9.02 | 8.76 | 0.0 | 24.18 | 464 | 108.7 | 9.11 | 8.79 | 0 | 24.17 | 464 | 110 | 9.22 | 8.8 | 0.9 | 24.33 | 464 | 113.2 | 9.46 | 8.8 | 0.7 | | 1 | 24.14 | 465 | 107.4 | 9.01 | 8.77 | 0.5 | 24.19 | 464 | 108.7 | 9.11 | 8.79 | 2.1 | 24.2 | 464 | 110.1 | 9.22 | 8.81 | 0.3 | 24.32 | 464 | 112.8 | 9.43 | 8.8 | 4 | | 2 | 24.14 | 465 | 107.5 | 9.02 | 8.76 | 5.0 | 24.19 | 464 | 108.8 | 9.12 | 8.79 | 0 | 24.2 | 464 | 109 | 9.13 | 8.8 | 2.5 | 24.29 | 464 | 111 | 9.28 | 8.8 | 0.5 | | 3 | 24.14 | 465 | 107.5 | 9.01 | 8.76 | 0.0 | 24.19 | 464 | 108.6 | 9.1 | 8.78 | 0 | 24.2 | 464 | 109.6 | 9.18 | 8.8 | 0.2 | 24.27 | 464 | 110.8 | 9.27 | 8.8 | 10 | | 4 | 24.14 | 465 | 106.8 | 8.96 | 8.76 | 0.6 | 24.18 | 464 | 108 | 9.05 | 8.78 | 3 | 24.2 | 465 | 108.7 | 9.11 | 8.8 | 2 | 24.25 | 464 | 109.8 | 9.19 | 8.8 | 0 | | 5 | 24.13 | 465 |
107.2 | 8.99 | 8.76 | 0.0 | 24.17 | 465 | 107.1 | 8.98 | 8.77 | 0 | 24.2 | 464 | 108.9 | 9.12 | 8.79 | 4 | 24.2 | 464 | 106.8 | 8.95 | 8.8 | 0 | | 6 | 24.13 | 465 | 107.1 | 8.98 | 8.75 | 1.0 | 24.15 | 465 | 106.2 | 8.9 | 8.77 | 0 | 24.17 | 464 | 107.4 | 9 | 8.78 | 2.9 | 24.1 | 465 | 103.1 | 8.66 | 8.8 | 0 | | 7 | 23.93 | 466 | 99.1 | 8.35 | 8.71 | 0.0 | 24.01 | 465 | 101.6 | 8.54 | 8.74 | 0 | 23.85 | 466 | 94.7 | 7.98 | 8.71 | 0 | 23.6 | 467 | 86.7 | 7.34 | 8.7 | 0 | | 8 | 23.71 | 467 | 89.3 | 7.55 | 8.65 | 0.0 | 23.68 | 467 | 88.3 | 7.46 | 8.68 | 0 | 23.49 | 468 | 79.6 | 6.76 | 8.63 | 0 | 23.34 | 469 | 74.5 | 6.34 | 8.6 | 0 | | 9 | 23.40 | 469 | 79.1 | 6.72 | 8.61 | 0.0 | 23.32 | 469 | 72.5 | 6.17 | 8.59 | 0 | 23.15 | 470 | 71.3 | 6.09 | 8.57 | 0 | 23.2 | 469 | 74.5 | 6.36 | 8.6 | 0 | | 10 | 23.09 | 469 | 73.8 | 6.31 | 8.56 | 0.0 | 23.16 | 470 | 71.6 | 6.12 | 8.55 | 0 | 23.07 | 470 | 70.8 | 6.06 | 8.56 | 0 | 23.11 | 469 | 71.1 | 6.08 | 8.6 | 0 | | 11 | 23.03 | 470 | 70.8 | 6.07 | 8.54 | 0.0 | 23.01 | 470 | 70.3 | 6.02 | 8.51 | 0 | 23.03 | 470 | 69 | 5.91 | 8.54 | 0 | 22.91 | 470 | 65.7 | 5.64 | 8.6 | 0 | | 12 | 2000 | • | | | | • | 2100 | | | | | • | 2200 | | | | | | 2300 | | | | | 0.3 | 24.32 | 463 | 115.4 | 9.65 | 8.8 | 1.2 | 24.26 | 463 | 112.5 | 9.41 | 8.82 | 3 | 24.3 | 464 | 110.6 | 9.25 | 8.82 | 1.7 | 24.2 | 465 | 109.2 | 9.15 | 8.8 | 6.8 | | 1 | 24.35 | 464 | 115.4 | 9.64 | 8.8 | 2.5 | 24.33 | 464 | 113.3 | 9.47 | 8.83 | 7.4 | 24.29 | 464 | 110.7 | 9.26 | 8.81 | 4 | 24.24 | 465 | 108.4 | 9.07 | 8.8 | 0.9 | | 2 | 24.33 | 464 | 113.4 | 9.48 | 8.8 | 1.5 | 24.32 | 464 | 112.8 | 9.43 | 8.82 | 3.2 | 24.3 | 464 | 110.1 | 9.21 | 8.81 | 2.5 | 24.22 | 465 | 107.2 | 8.97 | 8.8 | 0 | | 3 | 24.32 | 464 | 113.3 | 9.47 | 8.8 | 2.2 | 24.31 | 464 | 111.1 | 9.29 | 8.81 | 0 | 24.23 | 465 | 107.6 | 9.01 | 8.79 | 0 | 24.21 | 465 | 107 | 8.96 | 8.8 | 0.1 | | 4 | 24.3 | 464 | 112.8 | 9.43 | 8.8 | 2.5 | 24.26 | 464 | 109.1 | 9.13 | 8.79 | 0 | 24.04 | 465 | 100 | 8.41 | 8.75 | 0 | 24.11 | 465 | 102.2 | 8.57 | 8.8 | 0 | | 5 | 24.24 | 464 | 109.9 | 9.2 | 8.8 | 1.4 | 23.85 | 466 | 95.3 | 8.03 | 8.72 | 0 | 23.97 | 466 | 97.9 | 8.23 | 8.73 | 0 | 24.05 | 466 | 99.1 | 8.34 | 8.7 | 0 | | 6 | 23.69 | 467 | 90.4 | 7.65 | 8.7 | 0 | 23.81 | 466 | 93.8 | 7.92 | 8.71 | 0 | 23.94 | 466 | 96.1 | 8.09 | 8.72 | 0 | 23.97 | 466 | 96.2 | 8.09 | 8.7 | 0 | | 7 | 23.59 | 467 | 87.7 | 7.43 | 8.7 | 0 | 23.64 | 466 | 89.2 | 7.55 | 8.68 | 0 | 23.68 | 466 | 89.1 | 7.54 | 8.68 | 0 | 23.69 | 467 | 88.8 | 7.51 | 8.7 | 0 | | 8 | 23.36 | 468 | 80.3 | 6.83 | 8.6 | 0 | 23.48 | 467 | 86.7 | 7.36 | 8.66 | 0 | 23.55 | 467 | 87.6 | 7.43 | 8.66 | 0 | 23.25 | 468 | 77.9 | 6.64 | 8.6 | 0 | | 9 | 23.32 | 468 | 78.7 | 6.71 | 8.6 | 0 | 23.28 | 468 | 79.2 | 6.75 | 8.61 | 0 | 23.2 | 468 | 76.1 | 6.5 | 8.58 | 0 | 23 | 469 | 70.7 | 6.05 | 8.5 | 0 | | 10 | 23.02 | 469 | 71.3 | 6.11 | 8.6 | 0 | 22.97 | 469 | 70.4 | 6.03 | 8.53 | 0 | 22.83 | 471 | 63 | 5.42 | 8.47 | 0 | 22.89 | 470 | 66.5 | 5.71 | 8.5 | 0 | | 11 | 22.73 | 472 | 56.7 | 4.89 | 848 | 0 | 22.52 | 474 | 47.4 | 4.1 | 8.38 | 0 | 22.58 | 472 | 53.8 | 4.64 | 8.41 | 0 | 22.59 | 472 | 55.4 | 4.78 | 8.4 | 0 | | 12 | 2400 | | | | | | 100 | | | | | | 200 | | | | | | 300 | | | | | 0.3 | 24.14 | 464 | 108.1 | 9.06 | 8.8 | 0.5 | 24.13 | 465 | 107 | 8.98 | 8.81 | 0.3 | 24.1 | 465 | 106.6 | 8.95 | 8.81 | 1.5 | 24.03 | 465 | 105 | 8.82 | 8.8 | 2.8 | | 1 | 24.19 | 465 | 107.5 | 9.01 | 8.8 | 1 | 24.14 | 465 | 106.8 | 8.96 | 8.81 | 0 | 24.1 | 465 | 106.8 | 8.97 | 8.81 | 0.9 | 24.06 | 465 | 105.1 | 8.83 | 8.8 | 1.9 | | 2 | 24.17 | 465 | 106.4 | 8.91 | 8.8 | 0 | 24.14 | 464 | 106.9 | 8.97 | 8.81 | 3.2 | 24.11 | 465 | 106.5 | 8.94 | 8.81 | 0 | 24.06 | 465 | 104.9 | 8.81 | 8.8 | 2.1 | | 3 | 24.15 | 465 | 104 | 8.72 | 8.8 | 0 | 24.14 | 465 | 107 | 8.98 | 8.81 | 3.3 | 24.1 | 465 | 106.4 | 8.93 | 8.8 | 0.7 | 24.07 | 465 | 104.6 | 8.78 | 8.8 | 11 | | 4 | 24.13 | 465 | 103.1 | 8.65 | 8.8 | 0 | 24.14 | 465 | 106 | 8.89 | 8.79 | 1.3 | 23.9 | 466 | 94.5 | 7.96 | 8.75 | 0 | 24.06 | 465 | 103.6 | 8.7 | 8.8 | 2.5 | | 5 | 24.07 | 465 | 99.3 | 8.34 | 8.7 | 0 | 23.72 | 467 | 90 | 7.61 | 8.7 | 0 | 23.68 | 467 | 88.7 | 7.51 | 8.7 | 0 | 24.03 | 466 | 99.1 | 8.34 | 8.8 | 0 | | 6 | 23.75 | 467 | 90.6 | 7.66 | 8.7 | 0 | 23.53 | 467 | 84.8 | 7.2 | 8.69 | 0 | 23.63 | 467 | 88 | 7.46 | 8.7 | 0 | 23.7 | 467 | 89.2 | 7.55 | 8.7 | 0 | | 7 | 23.38 | 468 | 81.2 | 6.91 | 8.7 | 0 | 23.52 | 467 | 83.6 | 7.09 | 8.68 | 0 | 23.6 | 467 | 86.9 | 7.36 | 8.69 | 0 | 23.54 | 468 | 82 | 6.95 | 8.7 | 0 | | 8 | 23.37 | 468 | 80.9 | 6.89 | 8.6 | 0 | 23.48 | 468 | 79.9 | 6.79 | 8.65 | 0 | 23.39 | 469 | 77.3 | 6.58 | 8.63 | 0 | 23.29 | 469 | 79.2 | 6.74 | 8.6 | 0 | | 9 | 23.2 | 469 | 75.6 | 6.45 | 8.6 | 0 | 23.24 | 468 | 77.2 | 6.59 | 8.62 | 0 | 23.07 | 469 | 72 | 6.16 | 8.58 | 0 | 23.16 | 469 | 74.4 | 6.35 | 8.6 | 0 | | 10 | 23 | 469 | 68.5 | 5.87 | 8.5 | 0 | 22.98 | 470 | 68.2 | 5.85 | 8.55 | 0 | 23 | 470 | 70.2 | 6.02 | 8.56 | 0 | 23.06 | 469 | 72 | 6.16 | 8.6 | 0 | | 11 | 22.48 | 473 | 48.4 | 4.19 | 8.4 | 0 | 22.69 | 471 | 58.2 | 5.01 | 8.47 | 0 | 22.86 | 471 | 64.3 | 5.53 | 8.52 | 0 | 22.48 | 474 | 46.2 | 3.97 | 8.4 | 0 | | 12 | | | 1 | | | | 22.59 | 472 | 52.0 | 4.49 | 8.43 | 0.0 | | 1 | 1 | | | | | | | | | | | Table B-6 | . Continu | ed |-----------|----------------|------------|--------------|--------------|------------|-------|--------------|------------|--------------|--------------|--------------|-------|----------------|------------|--------------|--------------|--------------|-------|---------------|------------|--------------|--------------|------------|-------| | Depth | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | Temp | Cond | DO - % | DO | | Turb | | (meters) | (°C) | (uS/cm) | saturation | (mg/l) | pН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | рН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | рН | (NTU) | (°C) | (uS/cm) | saturation | (mg/l) | рН | (NTU) | | | | | 400 | | | | | | 500 | | | | | | 600 | | | | | | 700 | | | | | 0.3 | 24.02 | 465 | 104.1 | 8.75 | 8.8 | 2.1 | 23.97 | 466 | 103.1 | 8.68 | 8.8 | 0 | 23.92 | 466 | 102 | 8.59 | 8.8 | 0.4 | 23.92 | 466 | 101.4 | 8.54 | 8.8 | 0 | | 1 | 24.02 | 465 | 104 | 8.74 | 8.8 | 0 | 23.98 | 465 | 103.1 | 8.67 | 8.8 | 1.5 | 23.95 | 466 | 101.9 | 8.57 | 8.8 | 0.1 | 23.92 | 466 | 101.3 | 8.53 | 8.8 | 0 | | 2 | 24.02 | 465 | 103.7 | 8.72 | 8.8 | 0 | 23.99 | 465 | 102.9 | 8.65 | 8.8 | 0 | 23.95 | 466 | 101.8 | 8.57 | 8.8 | 0 | 23.92 | 466 | 101 | 8.5 | 8.8 | 1.2 | | 3 | 24.03 | 465 | 103.7 | 8.72 | 8.8 | 0 | 23.99 | 465 | 102.8 | 8.64 | 8.8 | 0 | 23.94 | 466 | 101.9 | 8.58 | 8.8 | 1.1 | 23.92 | 466 | 100.3 | 8.45 | 8.8 | 1.9 | | 4 | 24.03 | 465 | 103.2 | 8.67 | 8.8 | 0.6 | 23.99 | 465 | 102.7 | 8.63 | 8.79 | 0 | 23.95 | 466 | 101.9 | 8.58 | 8.79 | 0 | 23.92 | 466 | 98.9 | 8.33 | 8.8 | 0 | | 5 | 23.9 | 466 | 96.4 | 8.12 | 8.8 | 0 | 23.98 | 465 | 102.1 | 8.59 | 8.77 | 0.4 | 23.94 | 466 | 101.2 | 8.52 | 8.79 | 0.3 | 23.82 | 467 | 92.8 | 7.83 | 8.7 | 0 | | 6
7 | 23.64
23.54 | 468
468 | 84.4
83.2 | 7.14 | 8.7
8.7 | 0 | 23.69 | 467
468 | 87.4
79.2 | 7.4 | 8.7
8.65 | 0 | 23.8 | 467
469 | 92.4
78.6 | 7.79 | 8.74 | 0 | 23.57 | 468
469 | 83.7 | 7.09
6.55 | 8.7
8.6 | 0 | | 8 | 23.54 | 468 | 77.7 | 7.05
6.63 | 8.6 | 0 | 23.38 | 469 | 76.6 | 6.73
6.53 | 8.62 | 0 | 23.39 | 470 | 71.9 | 6.68
6.15 | 8.66
8.59 | 0 | 23.33 | 469 | 76.8
70.1 | 5.99 | 8.6 | 0 | | 9 | 23.21 | 468 | 77.2 | 6.59 | 8.6 | 0 | 23.23 | 469 | 73.8 | 6.31 | 8.59 | 0 | 23.00 | 470 | 68.5 | 5.87 | 8.56 | 0 | 22.93 | 471 | 65.9 | 5.65 | 8.5 | 0 | | 10 | 22.98 | 470 | 69.1 | 5.92 | 8.6 | 0 | 22.98 | 470 | 68.1 | 5.84 | 8.54 | 0 | 22.54 | 473 | 50.7 | 4.38 | 8.43 | 0 | 22.65 | 472 | 56.3 | 4.86 | 8.5 | 0 | | 11 | 22.46 | 474 | 45.9 | 3.98 | 8.4 | 0 | 22.34 | 474 | 43.3 | 3.76 | 8.36 | 0 | 22.38 | 474 | 45.1 | 3.91 | 8.38 | 0 | 22.36 | 474 | 46.5 | 4.04 | 8.4 | 0 | | 12 | 22.10 | | 10.0 | 0.00 | 0.1 | | 22.01 | | 10.0 | 0.10 | 0.00 | | 22.00 | | 10.1 | 0.01 | 0.00 | - V | 22.00 | | 10.0 | 1.01 | 0.1 | | | | | | 800 | | | | | | 900 | | | | | | 1000 | | | | | | 1100 | | | | | 0.3 | 23.86 | 467 | 101.6 | 8.56 | 8.8 | 0 | 23.91 | 466 | 104.2 | 8.77 | 8.81 | 0 | 24.11 | 466 | 106.9 | 8.97 | 8.84 | 0 | 24.38 | 465 | 107.8 | 9 | 8.8 | 0 | | 1 | 23.88 | 466 | 101.6 | 8.56 | 8.8 | 0 | 23.91 | 466 | 104 | 8.76 | 8.8 | 0 | 24 | 466 | 107 | 8.99 | 8.84 | 0 | 24.04 | 465 | 108.6 | 9.13 | 8.8 | 0 | | 2 | 23.88 | 466 | 100.8 | 8.5 | 8.8 | 0.7 | 23.91 | 466 | 103.1 | 8.69 | 8.8 | 0 | 23.94 | 466 | 105.7 | 8.89 | 8.84 | 0 | 23.93 | 465 | 106.6 | 8.98 | 8.8 | 0 | | 3 | 23.88 | 466 | 100.8 | 8.49 | 8.8 | 0 | 23.89 | 466 | 101.4 | 8.55 | 8.8 | 0 | 23.89 | 466 | 103.9 | 8.75 | 8.82 | 0 | 23.87 | 465 | 103.3 | 8.73 | 8.8 | 0 | | 4 | 23.87 | 466 | 101.3 | 8.54 | 8.8 | 0 | 23.88 | 466 | 99.9 | 8.42 | 8.78 | 0 | 23.84 | 466 | 101.2 | 8.54 | 8.8 | 0 | 23.8 | 466 | 99 | 8.36 | 8.8 | 0 | | 5 | 23.86 | 466 | 99.2 | 8.36 | 8.8 | 0 | 23.86 | 467 | 97.5 | 8.25 | 8.77 | 0 | 23.74 | 468 | 92.6 | 7.82 | 8.74 | 0 | 23.68 | 467 | 89.1 | 7.55 | 8.7 | 0 | | 6 | 23.55 | 469 | 82.9 | 7.02 | 8.7 | 0 | 23.61 | 468 | 84.6 | 7.16 | 8.68 | 0 | 23.55 | 469 | 83 | 7.05 | 8.68 | 0 | 23.54 | 468 | 82.4 | 6.98 | 8.7 | 0 | | 7 | 23.19 | 470 | 73.7 | 6.28 | 8.6 | 0 | 23.24 | 470 | 73.7 | 6.27 | 8.61 | 0 | 23.24 | 470 | 73.6 | 6.31 | 8.62 | 0 | 23.36 | 469 | 77.9 | 6.64 | 8.7 | 0 | | 8 | 23.08 | 471 | 69.3 | 5.93 | 8.6 | 0 | 23.02 | 471 | 67.2 | 5.75 | 8.56 | 0 | 23.02 | 471 | 67.1 | 5.74 | 8.57 | 0 | 23.05 | 470 | 68.7 | 5.87 | 8.6 | 0 | | 9 | 22.98 | 471
472 | 66.6 | 5.71 | 8.6 | 0 | 22.98 | 471 | 66.2 | 5.69 | 8.54 | 0 | 22.98 | 471 | 65.1 | 5.59 | 8.54 | 0 | 23.02 | 470 | 68 | 5.83 | 8.6 | 0 | | 10 | 22.73
22.35 | 474 | 55.6
44.2 |
4.78
3.82 | 8.5
8.4 | 0 | 22.8
22.4 | 472
474 | 59.6
47.1 | 5.12
4.06 | 8.47
8.39 | 0 | 22.71
22.59 | 473
473 | 56.9
52.8 | 4.89
4.53 | 8.47
8.44 | 0 | 22.95
22.6 | 471
473 | 65
54.9 | 5.58
4.75 | 8.5
8.5 | 0 | | 12 | 22.55 | 4/4 | 44.2 | 3.02 | 0.4 | U | 22.4 | 4/4 | 41.1 | 4.00 | 0.59 | U | 22.59 | 413 | 52.0 | 4.55 | 0.44 | U | 22.0 | 413 | 54.9 | 4.75 | 0.0 | | | 12 | | | 1200 | | | | | | 1300 | | | | | | 1400 | | | | | | 1500 | | | | | 0.3 | 24.65 | 465 | 108.9 | 9.06 | 8.8 | 0 | 24.38 | 465 | 112.5 | 9.4 | 8.84 | 0 | 24.74 | 464 | 116.8 | 9.7 | 8.86 | 0 | 24.71 | 465 | 115 | 9.53 | 8.9 | 0 | | 1 | 24.36 | 465 | 112.5 | 9.37 | 8.8 | 0 | 24.37 | 465 | 112.4 | 9.39 | 8.84 | 0 | 24.63 | 464 | 117.3 | 9.77 | 8.86 | 0 | 24.72 | 465 | 115.2 | 9.55 | 8.9 | 0 | | 2 | 23.97 | 464 | 112 | 9.42 | 8.8 | 0 | 24.05 | 464 | 115.5 | 9.7 | 8.85 | 0 | 24.36 | 464 | 117.1 | 9.78 | 8.86 | ō | 24.7 | 464 | 116.1 | 9.66 | 8.9 | Ö | | 3 | 23.88 | 464 | 107.7 | 9.07 | 8.8 | 0 | 23.92 | 464 | 112.2 | 9.47 | 8.83 | 1.5 | 24.13 | 464 | 116.7 | 9.78 | 8.85 | 2.3 | 24.15 | 464 | 117.6 | 9.88 | 8.9 | 0 | | 4 | 23.82 | 465 | 103.1 | 8.71 | 8.8 | 0 | 23.87 | 465 | 104.6 | 8.83 | 8.79 | 0 | 23.95 | 464 | 114.4 | 9.62 | 8.84 | 0 | 23.91 | 464 | 111 | 9.35 | 8.8 | 0 | | 5 | 23.71 | 467 | 93 | 7.91 | 8.8 | 0 | 23.77 | 466 | 97.4 | 8.22 | 8.76 | 0 | 23.84 | 465 | 105.1 | 8.85 | 8.81 | 0 | 23.76 | 466 | 97.3 | 8.21 | 8.8 | 0 | | 6 | 23.58 | 468 | 84.4 | 7.15 | 8.7 | 0 | 23.59 | 468 | 83.7 | 7.1 | 8.68 | 0 | 23.78 | 466 | 98.3 | 8.24 | 8.75 | 0 | 23.64 | 467 | 89.6 | 7.59 | 8.7 | 0 | | 7 | 23.31 | 469 | 78.7 | 6.7 | 8.7 | 0 | 23.48 | 468 | 80.7 | 6.85 | 8.65 | 0 | 23.56 | 468 | 85.3 | 7.23 | 8.68 | 0 | 23.33 | 468 | 81.4 | 6.95 | 8.7 | 0 | | 8 | 23.1 | 470 | 71.3 | 6.08 | 8.6 | 0 | 23.27 | 469 | 77.8 | 6.62 | 8.61 | 0 | 23.3 | 468 | 80.2 | 6.83 | 8.64 | 0 | 23.01 | 470 | 72.1 | 6.17 | 8.6 | 0 | | 9 | 23.02 | 470 | 70.2 | 6.01 | 8.6 | 0 | 23.08 | 470 | 71.5 | 6.12 | 8.57 | 0 | 23.11 | 469 | 74.1 | 6.33 | 8.61 | 0 | 22.96 | 470 | 70.5 | 6.04 | 8.6 | 0 | | 10 | 22.92 | 471 | 67.5 | 5.79 | 8.6 | 0 | 22.93 | 470 | 69.5 | 5.96 | 8.55 | 0 | 22.95 | 470 | 70.3 | 6.02 | 8.58 | 0 | 22.95 | 470 | 71 | 6.08 | 8.6 | 0 | | 11 | 22.82 | 471 | 64.8 | 5.56 | 8.6 | 0 | 22.79 | 471 | 63.4 | 5.45 | 8.51 | 0 | 22.85 | 470 | 69.6 | 5.91 | 8.55 | 0 | 22.92 | 470 | 71.5 | 6.13 | 8.6 | 0 | | 12 | | | | | | | | <u> </u> | | | | | | | | | | | | | | | | | This Page Intentionally Left Blank.